TY - INPR A1 - Scheitl, Carolin P.M. A1 - Ghaem Maghami, Mohammad A1 - Lenz, Ann-Kathrin A1 - Höbartner, Claudia T1 - Site-specific RNA methylation by a methyltransferase ribozyme T2 - Nature N2 - Nearly all classes of coding and non-coding RNA undergo post-transcriptional modification including RNA methylation. Methylated nucleotides belong to the evolutionarily most conserved features of tRNA and rRNA.1,2 Many contemporary methyltransferases use the universal cofactor S-adenosylmethionine (SAM) as methyl group donor. This and other nucleotide-derived cofactors are considered as evolutionary leftovers from an RNA World, in which ribozymes may have catalysed essential metabolic reactions beyond self-replication.3 Chemically diverse ribozymes seem to have been lost in Nature, but may be reconstructed in the laboratory by in vitro selection. Here, we report a methyltransferase ribozyme that catalyses the site-specific installation of 1-methyladenosine (m1A) in a substrate RNA, utilizing O6-methylguanine (m6G) as a small-molecule cofactor. The ribozyme shows a broad RNA sequence scope, as exemplified by site-specific adenosine methylation in tRNAs. This finding provides fundamental insights into RNA’s catalytic abilities, serves a synthetic tool to install m1A in RNA, and may pave the way to in vitro evolution of other methyltransferase and demethylase ribozymes. KW - Methyltransferase Ribozyme KW - RNA Enzymes KW - position-specific installation of m1A in RNA Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218687 ER - TY - JOUR A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Höbartner, Claudia T1 - Structure-fluorescence activation relationships of a large Stokes shift fluorogenic RNA aptamer JF - Nucleic Acids Research N2 - The Chili RNA aptamer is a 52 nt long fluorogen-activating RNA aptamer (FLAP) that confers fluorescence to structurally diverse derivatives of fluorescent protein chromophores. A key feature of Chili is the formation of highly stable complexes with different ligands, which exhibit bright, highly Stokes-shifted fluorescence emission. In this work, we have analyzed the interactions between the Chili RNA and a family of conditionally fluorescent ligands using a variety of spectroscopic, calorimetric and biochemical techniques to reveal key structure - fluorescence activation relationships (SFARs). The ligands under investigation form two categories with emission maxima of ~540 nm or ~590 nm, respectively, and bind with affinities in the nanomolar to low-micromolar range. Isothermal titration calorimetry was used to elucidate the enthalpic and entropic contributions to binding affinity for a cationic ligand that is unique to the Chili aptamer. In addition to fluorescence activation, ligand binding was also observed by NMR spectroscopy, revealing characteristic signals for the formation of a G-quadruplex only upon ligand binding. These data shed light on the molecular features required and responsible for the large Stokes shift and the strong fluorescence enhancement of red and green emitting RNA-chromophore complexes. KW - Chili RNA Aptamer KW - fluorogen-activating RNA aptamer (FLAP) KW - Stokes-shifted fluorescence emission KW - key structure - fluorescence activation relationships (SFARs) KW - ligand binding Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192340 ER - TY - JOUR A1 - Maghami, Mohammad Ghaem A1 - Dey, Surjendu A1 - Lenz, Ann-Kathrin A1 - Höbartner, Claudia T1 - Repurpsing Antiviral Drugs for Orthogonal RNA-Catalyzed Labeling JF - Angewandte Chemie, International Edition N2 - In vitro selected ribozymes are promising tools for site-specific labeling of RNA. Previously known nucleic acid catalysts attached fluorescently labeled adenosine or guanosine derivatives through 2’,5’-branched phosphodiester bonds to the RNA of interest. Herein, we report new ribozymes that use orthogonal substrates, derived from the antiviral drug tenofovir, and attach bioorthogonal functional groups, as well as affinity handles and fluorescent reporter units through a hydrolytically more stable phosphonate ester linkage. The tenofovir transferase ribozymes were identified by in vitro selection and are orthogonal to nucleotide transferase ribozymes. As genetically encodable functional RNAs, these ribozymes may be developed for potential cellular applications. The orthogonal ribozymes addressed desired target sites in large RNAs in vitro, as shown by fluorescent labeling of E. coli 16S and 23S RNAs in total cellular RNA. KW - Antiviral nucleoside analogues KW - in vitro selection KW - ribozymes KW - site-specific RNA labeling KW - tenofovir Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205552 VL - 59 ER - TY - JOUR A1 - Mieczkowski, Mateusz A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Pena, Vladimir A1 - Höbartner, Claudia T1 - Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine JF - Nature Communications N2 - Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. KW - Fluorogenic RNA Aptamers KW - Synthetic Functional RNAs KW - Chili RNA Aptamer KW - Co-Crystal Structures of Chili RNA KW - RNA KW - Optical Spectroscopy KW - Structural Biology KW - X-ray Crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254527 VL - 12 ER - TY - JOUR A1 - Mieczkowski, Mateusz A1 - Steinmetzger, Christian A1 - Bessi, Irene A1 - Lenz, Ann-Kathrin A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Pena, Vladimir A1 - Höbartner, Claudia T1 - Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine JF - Nature Communications N2 - Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer. KW - RNA KW - optical spectroscopy KW - structural biology KW - X-ray crystallography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270274 VL - 12 ER - TY - JOUR A1 - Okuda, Takumi A1 - Lenz, Ann-Kathrin A1 - Seitz, Florian A1 - Vogel, Jörg A1 - Höbartner, Claudia T1 - A SAM analogue-utilizing ribozyme for site-specific RNA alkylation in living cells JF - Nature Chemistry N2 - Post-transcriptional RNA modification methods are in high demand for site-specific RNA labelling and analysis of RNA functions. In vitro-selected ribozymes are attractive tools for RNA research and have the potential to overcome some of the limitations of chemoenzymatic approaches with repurposed methyltransferases. Here we report an alkyltransferase ribozyme that uses a synthetic, stabilized S-adenosylmethionine (SAM) analogue and catalyses the transfer of a propargyl group to a specific adenosine in the target RNA. Almost quantitative conversion was achieved within 1 h under a wide range of reaction conditions in vitro, including physiological magnesium ion concentrations. A genetically encoded version of the SAM analogue-utilizing ribozyme (SAMURI) was expressed in HEK293T cells, and intracellular propargylation of the target adenosine was confirmed by specific fluorescent labelling. SAMURI is a general tool for the site-specific installation of the smallest tag for azide-alkyne click chemistry, which can be further functionalized with fluorophores, affinity tags or other functional probes. KW - Alkyltransferase Ribozyme SAMURI KW - Site-specific RNA labelling KW - bioorthogonal SAM analogue ProSeDMA KW - Chemical modification KW - RNA Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328762 ER -