TY - JOUR A1 - Kaluza, Benjamin F. A1 - Wallace, Helen M. A1 - Heard, Tim A. A1 - Minden, Vanessa A1 - Klein, Alexandra A1 - Leonhardt, Sara D. T1 - Social bees are fitter in more biodiverse environments JF - Scientific Reports N2 - Bee population declines are often linked to human impacts, especially habitat and biodiversity loss, but empirical evidence is lacking. To clarify the link between biodiversity loss and bee decline, we examined how floral diversity affects (reproductive) fitness and population growth of a social stingless bee. For the first time, we related available resource diversity and abundance to resource (quality and quantity) intake and colony reproduction, over more than two years. Our results reveal plant diversity as key driver of bee fitness. Social bee colonies were fitter and their populations grew faster in more florally diverse environments due to a continuous supply of food resources. Colonies responded to high plant diversity with increased resource intake and colony food stores. Our findings thus point to biodiversity loss as main reason for the observed bee decline. KW - biodiversity KW - ecosystem services KW - social bees KW - fitness Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177231 VL - 8 IS - 12353 ER - TY - JOUR A1 - Trinkl, Moritz A1 - Kaluza, Benjamin F. A1 - Wallace, Helen A1 - Heard, Tim A. A1 - Keller, Alexander A1 - Leonhardt, Sara D. T1 - Floral Species Richness Correlates with Changes in the Nutritional Quality of Larval Diets in a Stingless Bee JF - Insects N2 - Bees need food of appropriate nutritional quality to maintain their metabolic functions. They largely obtain all required nutrients from floral resources, i.e., pollen and nectar. However, the diversity, composition and nutritional quality of floral resources varies with the surrounding environment and can be strongly altered in human-impacted habitats. We investigated whether differences in plant species richness as found in the surrounding environment correlated with variation in the floral diversity and nutritional quality of larval provisions (i.e., mixtures of pollen, nectar and salivary secretions) composed by the mass-provisioning stingless bee Tetragonula carbonaria (Apidae: Meliponini). We found that the floral diversity of larval provisions increased with increasing plant species richness. The sucrose and fat (total fatty acid) content and the proportion and concentration of the omega-6 fatty acid linoleic acid decreased, whereas the proportion of the omega-3 fatty acid linolenic acid increased with increasing plant species richness. Protein (total amino acid) content and amino acid composition did not change. The protein to fat (P:F) ratio, known to affect bee foraging, increased on average by more than 40% from plantations to forests and gardens, while the omega-6:3 ratio, known to negatively affect cognitive performance, decreased with increasing plant species richness. Our results suggest that plant species richness may support T. carbonaria colonies by providing not only a continuous resource supply (as shown in a previous study), but also floral resources of high nutritional quality. KW - floral resources KW - plant-insect interactions KW - nutrition KW - biodiversity KW - bee decline Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200605 SN - 2075-4450 VL - 11 IS - 2 ER -