TY - JOUR A1 - Ramler, Jacqueline A1 - Schwarzmann, Johannes A1 - Stoy, Andreas A1 - Lichtenberg, Crispin T1 - Two Faces of the Bi−O Bond: Photochemically and Thermally Induced Dehydrocoupling for Si−O Bond Formation JF - European Journal of Inorganic Chemistry N2 - The diorgano(bismuth)alcoholate [Bi((C\(_{6}\)H\(_{4}\)CH\(_{2}\))\(_{2}\)S)OPh] (1-OPh) has been synthesized and fully characterized. Stoichiometric reactions, UV/Vis spectroscopy, and (TD-)DFT calculations suggest its susceptibility to homolytic and heterolytic Bi−O bond cleavage under given reaction conditions. Using the dehydrocoupling of silanes with either TEMPO or phenol as model reactions, the catalytic competency of 1-OPh has been investigated (TEMPO=(tetramethyl-piperidin-1-yl)-oxyl). Different reaction pathways can deliberately be addressed by applying photochemical or thermal reaction conditions and by choosing radical or closed-shell substrates (TEMPO vs. phenol). Applied analytical techniques include NMR, UV/Vis, and EPR spectroscopy, mass spectrometry, single-crystal X-ray diffraction analysis, and (TD)-DFT calculations. KW - Bismuth KW - dehydrocoupling KW - radical reactions KW - chalcogens KW - catalysis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257428 VL - 2022 IS - 7 ER - TY - JOUR A1 - Oberdorf, Kai A1 - Hanft, Anna A1 - Ramler, Jacqueline A1 - Krummenacher, Ivo A1 - Bickelhaupt, Matthias A1 - Poater, Jordi A1 - Lichtenberg, Crispin T1 - Bismuth Amides Mediate Facile and Highly Selective Pn–Pn Radical‐Coupling Reactions (Pn=N, P, As) JF - Angewandte Chemie, International Edition N2 - The controlled release of well‐defined radical species under mild conditions for subsequent use in selective reactions is an important and challenging task in synthetic chemistry. We show here that simple bismuth amide species [Bi(NAr\(_2\))\(_3\)] readily release aminyl radicals [NAr\(_2\)]. at ambient temperature in solution. These reactions yield the corresponding hydrazines, Ar\(_2\)N−NAr\(_2\), as a result of highly selective N−N coupling. The exploitation of facile homolytic Bi−Pn bond cleavage for Pn−Pn bond formation was extended to higher homologues of the pnictogens (Pn=N–As): homoleptic bismuth amides mediate the highly selective dehydrocoupling of HPnR\(_2\) to give R\(_2\)Pn−PnR\(_2\). Analyses by NMR and EPR spectroscopy, single‐crystal X‐ray diffraction, and DFT calculations reveal low Bi−N homolytic bond‐dissociation energies, suggest radical coupling in the coordination sphere of bismuth, and reveal electronic and steric parameters as effective tools to control these reactions. KW - bismuth amides KW - radical species KW - pnictogen coupling KW - aminyl radicals KW - diphosphanes KW - heavier pnictogens KW - radical coupling Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236582 VL - 60 IS - 12 ER -