TY - JOUR A1 - Streng, Andrea A1 - Grote, Veit A1 - Liese, Johannes G. T1 - Severe influenza cases in paediatric intensive care units in Germany during the pre-pandemic seasons 2005 to 2008 N2 - Background: Data on complications in children with seasonal influenza virus infection are limited. We initiated a nation-wide three-year surveillance of children who were admitted to a paediatric intensive care unit (PICU) with severe seasonal influenza. Methods: From October 2005 to July 2008, active surveillance was performed using an established reporting system for rare diseases (ESPED) including all paediatric hospitals in Germany. Cases to be reported were hospitalized children < 17 years of age with laboratory-confirmed influenza treated in a PICU or dying in hospital. Results: Twenty severe influenza-associated cases were reported from 14 PICUs during three pre-pandemic influenza seasons (2005-2008). The median age of the patients (12 males/8 females) was 7.5 years (range 0.1-15 years). None had received vaccination against influenza. In 14 (70%) patients, the infection had been caused by influenza A and in five (25%) by influenza B; in one child (5%) the influenza type was not reported. Patients spent a median of 19 (IQR 12-38) days in the hospital and a median of 11 days (IQR 6-18 days) in the PICU; 10 (50%) needed mechanical ventilation. Most frequent diagnoses were influenza-associated pneumonia (60%), bronchitis / bronchiolitis (30%), encephalitis / encephalopathy (25%), secondary bacterial pneumonia (25%), and ARDS (25%). Eleven (55%) children had chronic underlying medical conditions, including 8 (40%) with chronic pulmonary diseases. Two influenza A- associated deaths were reported: i) an 8-year old boy with pneumococcal encephalopathy following influenza infection died from cerebral edema, ii) a 14-year-old boy with asthma bronchiale, cardiac malformation and Addison’s disease died from cardiac and respiratory failure. For nine (45%) patients, possibly permanent sequelae were reported (3 neurological, 3 pulmonary, 3 other sequelae). Conclusions: Influenza-associated pneumonia and secondary bacterial infections are relevant complications of seasonal influenza in Germany. The incidence of severe influenza cases in PICUs was relatively low. This may be either due to the weak to moderate seasonal influenza activity during the years 2005 to 2008 or due to underdiagnosis of influenza by physicians. Fifty % of the observed severe cases might have been prevented by following the recommendations for vaccination of risk groups in Germany. KW - Deutschland KW - Grippe Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-69120 ER - TY - JOUR A1 - Streng, Andrea A1 - Prifert, Christiane A1 - Weissbrich, Benedikt A1 - Sauerbrei, Andreas A1 - Krumbholz, Andi A1 - Schmid-Ott, Ruprecht A1 - Liese, Johannes G. T1 - Similar severity of influenza primary and re-infections in pre-school children requiring outpatient treatment due to febrile acute respiratory illness: prospective, multicentre surveillance study (2013-2015) JF - BMC Infectious Diseases N2 - Background Influenza virus infections in immunologically naïve children (primary infection) may be more severe than in children with re-infections who are already immunologically primed. We compared frequency and severity of influenza virus primary and re-infections in pre-school children requiring outpatient treatment. Methods Influenza-unvaccinated children 1–5 years of age presenting at pediatric practices with febrile acute respiratory infection < 48 h after symptom onset were enrolled in a prospective, cross-sectional, multicenter surveillance study (2013–2015). Influenza types/subtypes were PCR-confirmed from oropharyngeal swabs. Influenza type/subtype-specific IgG antibodies serving as surrogate markers for immunological priming were determined using ELISA/hemagglutination inhibition assays. The acute influenza disease was defined as primary infection/re-infection by the absence/presence of influenza type-specific immunoglobulin G (IgG) and, in a second approach, by the absence/presence of subtype-specific IgG. Socio-demographic and clinical data were also recorded. Results Of 217 influenza infections, 178 were due to influenza A (87 [49%] primary infections, 91 [51%] re-infections) and 39 were due to influenza B (38 [97%] primary infections, one [3%] re-infection). Children with “influenza A primary infections” showed fever with respiratory symptoms for a shorter period than children with “influenza A re-infections” (median 3 vs. 4 days; age-adjusted p = 0.03); other disease characteristics were similar. If primary infections and re-infections were defined based on influenza A subtypes, 122 (87%) primary infections (78 “A(H3N2) primary infections”, 44 “A(H1N1)pdm09 primary infections”) and 18 (13%) re-infections could be classified (14 “A(H3N2) re-infections” and 4 “A(H1N1)pdm09 re-infections”). Per subtype, primary infections and re-infections were of similar disease severity. Children with re-infections defined on the subtype level usually had non-protective IgG titers against the subtype of their acute infection (16 of 18; 89%). Some patients infected by one of the influenza A subtypes showed protective IgG titers (≥ 1:40) against the other influenza A subtype (32/140; 23%). Conclusions Pre-school children with acute influenza A primary infections and re-infections presented with similar frequency in pediatric practices. Contrary to expectation, severity of acute “influenza A primary infections” and “influenza A re-infections” were similar. Most “influenza A re-infections” defined on the type level turned out to be primary infections when defined based on the subtype. On the subtype level, re-infections were rare and of similar disease severity as primary infections of the same subtype. Subtype level re-infections were usually associated with low IgG levels for the specific subtype of the acute infection, suggesting only short-time humoral immunity induced by previous infection by this subtype. Overall, the results indicated recurring influenza virus infections in this age group and no or only limited heterosubtypic antibody-mediated cross-protection. KW - influenza KW - children KW - disease severity KW - IgG KW - immunology Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265841 VL - 22 ER - TY - JOUR A1 - Streng, Andrea A1 - Goettler, David A1 - Haerlein, Miriam A1 - Lehmann, Lisa A1 - Ulrich, Kristina A1 - Prifert, Christiane A1 - Krempl, Christine A1 - Weißbrich, Benedikt A1 - Liese, Johannes G. T1 - Spread and clinical severity of respiratory syncytial virus A genotype ON1 in Germany, 2011–2017 JF - BMC Infectious Diseases N2 - Background The Respiratory Syncytial Virus (RSV) A genotype ON1, which was first detected in Ontario (Canada) in 2010/11, appeared in Germany in 2011/12. Preliminary observations suggested a higher clinical severity in children infected with this new genotype. We investigated spread and disease severity of RSV-A ON1 in pediatric in- and outpatient settings. Methods During 2010/11 to 2016/17, clinical characteristics and respiratory samples from children with acute respiratory tract infections (RTI) were obtained from ongoing surveillance studies in 33 pediatric practices (PP), one pediatric hospital ward (PW) and 23 pediatric intensive care units (PICU) in Germany. RSV was detected in the respiratory samples by PCR; genotypes were identified by sequencing. Within each setting, clinical severity markers were compared between RSV-A ON1 and RSV-A non-ON1 genotypes. Results A total of 603 children with RSV-RTI were included (132 children in PP, 288 in PW, and 183 in PICU). Of these children, 341 (56.6%) were infected with RSV-A, 235 (39.0%) with RSV-B, and one child (0.2%) with both RSV-A and RSV-B; in 26 (4.3%) children, the subtype could not be identified. In the 341 RSV-A positive samples, genotype ON1 was detected in 247 (72.4%), NA1 in 92 (26.9%), and GA5 in 2 children (0.6%). RSV-A ON1, rarely observed in 2011/12, was the predominant RSV-A genotype in all settings by 2012/13 and remained predominant until 2016/17. Children in PP or PW infected with RSV-A ON1 did not show a more severe clinical course of disease compared with RSV-A non-ON1 infections. In the PICU group, hospital stay was one day longer (median 8 days, inter-quartile range (IQR) 7–12 vs. 7 days, IQR 5–9; p = 0.02) and duration of oxygen treatment two days longer (median 6 days, IQR 4–9 vs. 4 days, IQR 2–6; p = 0.03) for children infected with RSV-A ON1. Conclusions In children, RSV-A ON1 largely replaced RSV-A non-ON1 genotypes within two seasons and remained the predominant RSV-A genotype in Germany during subsequent seasons. A higher clinical severity of RSV-A ON1 was observed within the group of children receiving PICU treatment, whereas in other settings clinical severity of RSV-A ON1 and non-ON1 genotypes was largely similar. KW - Children KW - Respiratory tract infection KW - RSV-A ON1 KW - Epidemiology KW - Disease severity Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201516 VL - 19 ER - TY - JOUR A1 - Streng, Andrea A1 - Grote, Veit A1 - Carr, David A1 - Hagemann, Christine A1 - Liese, Johannes G. T1 - Varicella routine vaccination and the effects on varicella epidemiology – results from the Bavarian Varicella Surveillance Project (BaVariPro), 2006-2011 JF - BMC Infectious Diseases N2 - Background In 2004, routine varicella vaccination was recommended in Germany for children 11-14 months of age with one dose, and since 2009, with a second dose at 15-23 months of age. The effects on varicella epidemiology were investigated. Methods Data on varicella vaccinations, cases and complications were collected from annual parent surveys (2006-2011), monthly paediatric practice surveillance (Oct 2006 - Sep 2011; five varicella seasons) and paediatric hospital databases (2005-2009) in the area of Munich (about 238,000 paediatric inhabitants); annual incidences of cases and hospitalisations were estimated. Results Varicella vaccination coverage (1st dose) in children 18-36 months of age increased in two steps (38%, 51%, 53%, 53%, 66% and 68%); second-dose coverage reached 59% in the 2011 survey. A monthly mean of 82 (62%) practices participated; they applied a total of 50,059 first-dose and 40,541 second-dose varicella vaccinations, with preferential use of combined MMR-varicella vaccine after recommendation of two doses, and reported a total of 16,054 varicella cases <17 years of age. The mean number of cases decreased by 67% in two steps, from 6.6 (95%CI 6.1-7.0) per 1,000 patient contacts in season 2006/07 to 4.2 (95%CI 3.9-4.6) in 2007/08 and 4.0 (95%CI 3.6-4.3) in 2008/09, and further to 2.3 (95%CI 2.0-2.6) in 2009/10 and 2.2 (95%CI 1.9-2.5) in 2010/11. The decrease occurred in all paediatric age groups, indicating herd protection effects. Incidence of varicella was estimated as 78/1,000 children <17 years of age in 2006/07, and 19/1,000 in 2010/11. Vaccinated cases increased from 0.3 (95%0.2-0.3) per 1,000 patient contacts in 2006/07 to 0.4 (95%CI 0.3-0.5) until 2008/09 and decreased to 0.2 (95%CI 0.2-0.3) until 2010/11. The practices treated a total of 134 complicated cases, mainly with skin complications. The paediatric hospitals recorded a total of 178 varicella patients, including 40 (22.5%) with neurological complications and one (0.6%) fatality due to varicella pneumonia. Incidence of hospitalisations decreased from 7.6 per 100,000 children <17 years of age in 2005 to 4.3 in 2009, and from 21.0 to 4.7 in children <5 years of age. Conclusions Overall, the results show increasing acceptance and a strong impact of the varicella vaccination program, even with still suboptimal vaccination coverage. KW - Varicella KW - Surveillance KW - Coverage KW - Vaccination KW - Hospitalisation KW - Paediatric KW - Incidence Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96297 UR - http://www.biomedcentral.com/1471-2334/13/303 ER -