TY - JOUR A1 - Hornburg, Daniel A1 - Drepper, Carsten A1 - Butter, Falk A1 - Meissner, Felix A1 - Sendtner, Michael A1 - Mann, Matthias T1 - Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics* JF - Molecular & Cellular Proteomics : MCP N2 - The fatal neurodegenerative disorders amyotrophic lateral sclerosis and spinal muscular atrophy are, respectively, the most common motoneuron disease and genetic cause of infant death. Various in vitro model systems have been established to investigate motoneuron disease mechanisms, in particular immortalized cell lines and primary neurons. Using quantitative mass-spectrometry-based proteomics, we compared the proteomes of primary motoneurons to motoneuron-like cell lines NSC-34 and N2a, as well as to non-neuronal control cells, at a depth of 10,000 proteins. We used this resource to evaluate the suitability of murine in vitro model systems for cell biological and biochemical analysis of motoneuron disease mechanisms. Individual protein and pathway analysis indicated substantial differences between motoneuron-like cell lines and primary motoneurons, especially for proteins involved in differentiation, cytoskeleton, and receptor signaling, whereas common metabolic pathways were more similar. The proteins associated with amyotrophic lateral sclerosis also showed distinct differences between cell lines and primary motoneurons, providing a molecular basis for understanding fundamental alterations between cell lines and neurons with respect to neuronal pathways with relevance for disease mechanisms. Our study provides a proteomics resource for motoneuron research and presents a paradigm of how mass-spectrometry-based proteomics can be used to evaluate disease model systems. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120954 SN - 1535-9484 N1 - This research was originally published in Molecular & Cellular Proteomics. Daniel Hornburg, Carsten Drepper, Falk Butter, Felix Meissner, Michael Sendtner, and Matthias Mann. Deep Proteomic Evaluation of Primary and Cell Line Motoneuron Disease Models Delineates Major Differences in Neuronal Characteristics*. Molecular & Cellular Proteomics. 2014; 13:3410–3420. © the American Society for Biochemistry and Molecular Biology. VL - 13 IS - 12 ER - TY - JOUR A1 - Ghanawi, Hanaa A1 - Hennlein, Luisa A1 - Zare, Abdolhossein A1 - Bader, Jakob A1 - Salehi, Saeede A1 - Hornburg, Daniel A1 - Ji, Changhe A1 - Sivadasan, Rajeeve A1 - Drepper, Carsten A1 - Meissner, Felix A1 - Mann, Matthias A1 - Jablonka, Sibylle A1 - Briese, Michael A1 - Sendtner, Michael T1 - Loss of full-length hnRNP R isoform impairs DNA damage response in motoneurons by inhibiting Yb1 recruitment to chromatin JF - Nucleic Acids Research N2 - Neurons critically rely on the functions of RNA-binding proteins to maintain their polarity and resistance to neurotoxic stress. HnRNP R has a diverse range of post-transcriptional regulatory functions and is important for neuronal development by regulating axon growth. Hnrnpr pre-mRNA undergoes alternative splicing giving rise to a full-length protein and a shorter isoform lacking its N-terminal acidic domain. To investigate functions selectively associated with the full-length hnRNP R isoform, we generated a Hnrnpr knockout mouse (Hnrnpr\(^{tm1a/tm1a}\)) in which expression of full-length hnRNP R was abolished while production of the truncated hnRNP R isoform was retained. Motoneurons cultured from Hnrnpr\(^{tm1a/tm1a}\) mice did not show any axonal growth defects but exhibited enhanced accumulation of double-strand breaks and an impaired DNA damage response upon exposure to genotoxic agents. Proteomic analysis of the hnRNP R interactome revealed the multifunctional protein Yb1 as a top interactor. Yb1-depleted motoneurons were defective in DNA damage repair. We show that Yb1 is recruited to chromatin upon DNA damage where it interacts with gamma-H2AX, a mechanism that is dependent on full-length hnRNP R. Our findings thus suggest a novel role of hnRNP R in maintaining genomic integrity and highlight the function of its N-terminal acidic domain in this context. KW - nuclear ribonucleoprotein-R KW - determining gene-product KW - actin messenger RNA KW - comet assay KW - genome wide KW - spinal cord KW - YB-1 KW - SMN KW - interacts KW - enrichment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265687 VL - 49 IS - 21 ER - TY - JOUR A1 - Ji, Changhe A1 - Bader, Jakob A1 - Ramanathan, Pradhipa A1 - Hennlein, Luisa A1 - Meissner, Felix A1 - Jablonka, Sibylle A1 - Mann, Matthias A1 - Fischer, Utz A1 - Sendtner, Michael A1 - Briese, Michael T1 - Interaction of 7SK with the Smn complex modulates snRNP production JF - Nature Communications N2 - Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand. KW - Molecular neuroscience KW - RNA KW - RNA splicing KW - Transcription Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259125 VL - 12 IS - 1 ER -