TY - JOUR A1 - Jos, Swetha A1 - Szwetkowski, Connor A1 - Slebodnick, Carla A1 - Ricker, Robert A1 - Chan, Ka Lok A1 - Chan, Wing Chun A1 - Radius, Udo A1 - Lin, Zhenyang A1 - Marder, Todd B. A1 - Santos, Webster L. T1 - Transition Metal‐Free Regio‐ and Stereo‐Selective trans Hydroboration of 1,3‐Diynes: A Phosphine‐Catalyzed Access to (E)‐1‐Boryl‐1,3‐Enynes JF - Chemistry – A European Journal N2 - We report a transition metal‐free, regio‐ and stereo‐selective, phosphine‐catalyzed method for the trans hydroboration of 1,3‐diynes with pinacolborane that affords (E)‐1‐boryl‐1,3‐enynes. The reaction proceeds with excellent selectivity for boron addition to the external carbon of the 1,3‐diyne framework as unambiguously established by NMR and X‐ray crystallographic studies. The reaction displays a broad substrate scope including unsymmetrical diynes to generate products in high yield (up to 95 %). Experimental and theoretical studies suggest that phosphine attack on the alkyne is a key process in the catalytic cycle. KW - enediyne KW - enyne KW - hydroboration KW - organocatalytic KW - stereoselective Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-293784 VL - 28 IS - 63 ER - TY - JOUR A1 - Liu, Xiaocui A1 - Ming, Wenbo A1 - Zhang, Yixiao A1 - Friedrich, Alexandra A1 - Marder, Todd B. T1 - Copper-Catalyzed Triboration: Straightforward, Atom-Economical Synthesis of 1,1,1-Triborylalkanes from Terminal Alkynes and HBpin JF - Angewandte Chemie International Edition N2 - A convenient and efficient one‐step synthesis of 1,1,1‐triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroborations of terminal alkynes with HBpin (HBpin=pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)\(_2\). This process proceeds under mild conditions, furnishing 1,1,1‐tris(boronates) with wide substrate scope, excellent selectivity, and good functional‐group tolerance, and is applicable to gram‐scale synthesis without loss of yield. The 1,1,1‐triborylalkanes can be used in the preparation of α‐vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base‐mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols. KW - boronic acid KW - cross-coupling KW - dehydrogenaticve borylation KW - gem-bisboronates KW - hydroboration Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206185 VL - 58 IS - 52 ER -