TY - JOUR A1 - Redlich, Sarah A1 - Martin, Emily A. A1 - Steffan‐Dewenter, Ingolf T1 - Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems JF - Journal of Applied Ecology N2 - Input‐driven, modern agriculture is commonly associated with large‐scale threats to biodiversity, the disruption of ecosystem services and long‐term risks to food security and human health. A switch to more sustainable yet highly productive farming practices seems unavoidable. However, an integrative evaluation of targeted management schemes at field and landscape scales is currently lacking. Furthermore, the often‐disproportionate influence of soil conditions and agrochemicals on yields may mask the benefits of biodiversity‐driven ecosystem services. Here, we used a real‐world ecosystem approach to identify sustainable management practices for enhanced functional biodiversity and yield on 28 temperate wheat fields. Using path analysis, we assessed direct and indirect links between soil, crop and landscape management with natural enemies and pests, as well as follow‐on effects on yield quantity and quality. A paired‐field design with a crossed insecticide‐fertilizer experiment allowed us to control for the relative influence of soil characteristics and agrochemical inputs. We demonstrate that biodiversity‐enhancing management options such as reduced tillage, crop rotation diversity and small field size can enhance natural enemies without relying on agrochemical inputs. Similarly, we show that in this system controlling pests and weeds by agrochemical means is less relevant than expected for final crop productivity. Synthesis and applications. Our study highlights soil, crop and landscape management practices that can enhance beneficial biodiversity while reducing agrochemical usage and negative environmental impacts of conventional agriculture. The diversification of cropping systems and conservation tillage are practical measures most farmers can implement without productivity losses. Combining local measures with improved landscape management may also strengthen the sustainability and resilience of cropping systems in light of future global change. KW - crop management KW - ecological intensification KW - landscape heterogeneity KW - natural enemies KW - pests KW - soil characteristics KW - sustainable intensification KW - wheat yield Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228345 VL - 58 IS - 3 SP - 507 EP - 517 ER - TY - JOUR A1 - Mall, David A1 - Larsen, Ashley E. A1 - Martin, Emily A. T1 - Investigating the (mis)match between natural pest control knowledge and the intensity of pesticide use JF - Insects N2 - Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch) between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture. KW - ecological intensification KW - insecticides KW - agroecology KW - agricultural intensity KW - biological pest control KW - crop KW - study system Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158977 VL - 9 IS - 1 ER -