TY - JOUR A1 - Linker, Ralf A. A1 - Magnus, Tim A1 - Korn, Thomas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Report on the 5‘th scientific meeting of the “Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie” (NEUROWIND e.V.) held in Motzen, Germany, Oct. 25th – Oct. 27th, 2013 JF - Experimental & Translational Stroke Medicine N2 - From october 25th - 27th 2013, the 5th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. This year more than 60 doctoral students and postdocs from over 25 different groups working in German university hospitals or research institutes attended the meeting to discuss their latest findings in the fields of neuroimmunology, neurodegeneration and neurovascular research. All participants appreciated the stimulating environment in Motzen, Brandenburg, and people took the opportunity for scientific exchange, discussion about ongoing projects and already started further collaborations. Like in the previous years, the symposium was regarded as a very well organized platform to support research of young investigators in Germany. According to the major aim of NEUROWIND e.V. to support younger researchers in Germany the 3rd NEUROWIND YOUNG SCIENTIST AWARD for experimental neurology was awarded to Ruth Stassart working in the group of Klaus Armin Nave and Wolfgang Brück (MPI Göttingen and Department of Neuropathology, Göttingen Germany). The successful work was published in Nature Neuroscience entitled “A role for Swann cell-derived neuregulin-1 in remyelination”. This outstanding paper deals with the function of Schwann cell neuregulin as an endogenous factor for myelin repair. The award is endowed with 20.000 Euro sponsored by Merck Serono GmbH, Darmstadt, Germany (unrestricted educational grant). This year’s keynote lecture was given by Albert Ludolph, Head of the Department of Neurology at the University Clinic of Ulm. Dr. Ludolph highlighted the particular role of individual scientists for the development of research concepts in Alzheimer´s disease (AD) and frontotemporal dementia (FTD). KW - NEUROWIND Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129230 VL - 5 IS - 15 ER - TY - JOUR A1 - Ehling, Petra A1 - Göb, Eva A1 - Bittner, Stefan A1 - Budde, Thomas A1 - Ludwig, Andreas A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Ischemia-induced cell depolarization: does the hyperpolarization-activated cation channel HCN2 affect the outcome after stroke in mice? JF - Experimental & Translational Stroke Medicine N2 - Background Brain ischemia is known to include neuronal cell death and persisting neurological deficits. A lack of oxygen and glucose are considered to be key mediators of ischemic neurodegeneration while the exact mechanisms are yet unclear. In former studies the expression of two different two-pore domain potassium \((K_{2P})\) channels (TASK1, TREK1) were shown to ameliorate neuronal damage due to cerebral ischemia. In neurons, TASK channels carrying hyperpolarizing \(K^+\) leak currents, and the pacemaker channel HCN2, carrying depolarizing Ih, stabilize the membrane potential by a mutual functional interaction. It is assumed that this ionic interplay between TASK and HCN2 channels enhances the resistance of neurons to insults accompanied by extracellular pH shifts. Methods In C57Bl/6 (wildtype, WT), \(hcn2^{+/+}\) and \(hcn2^{-/-}\) mice we used an in vivo model of cerebral ischemia (transient middle cerebral artery occlusion (tMCAO)) to depict a functional impact of HCN2 in stroke formation. Subsequent analyses comprise behavioural tests and hcn2 gene expression assays. Results After 60 min of tMCAO induction in WT mice, we collected tissue samples at 6, 12, and 24 h after reperfusion. In the infarcted neocortex, hcn2 expression analyses revealed a nominal peak of hcn2 expression 6 h after reperfusion with a tendency towards lower expression levels with longer reperfusion times. Hcn2 gene expression levels in infarcted basal ganglia did not change after 6 h and 12 h. Only at 24 h after reperfusion, hcn2 expression significantly decreases by ~55%. However, 30 min of tMCAO in hcn2-/- as well as hcn2+/+ littermates induced similar infarct volumes. Behavioural tests for global neurological function (Bederson score) and motor function/coordination (grip test) were performed at day 1 after surgery. Again, we found no differences between the groups. Conclusions Here, we hypothesized that the absence of HCN2, an important functional counter player of TASK channels, affects neuronal survival during stroke-induced tissue damage. However, together with a former study on TASK3 these results implicate that both TASK3 and HCN2 which were supposed to be neuroprotective due to their pH-dependency, do not influence ischemic neurodegeneration during stroke in the tMCAO model. KW - neurology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129240 VL - 5 IS - 16 ER - TY - JOUR A1 - Kleinschnitz, Christoph A1 - Göbel, Kerstin A1 - Meuth, Sven G. A1 - Kraft, Peter T1 - Glatiramer acetate does not protect from acute ischemic stroke in mice N2 - Background The role of the immune system in the pathophysiology of acute ischemic stroke is increasingly recognized. However, targeted treatment strategies to modulate immunological pathways in stroke are still lacking. Glatiramer acetate is a multifaceted immunomodulator approved for the treatment of relapsing-remitting multiple sclerosis. Experimental studies suggest that glatiramer acetate might also work in other neuroinflammatory or neurodegenerative diseases apart from multiple sclerosis. Findings We evaluated the efficacy of glatiramer acetate in a mouse model of brain ischemia/reperfusion injury. 60 min of transient middle cerebral artery occlusion was induced in male C57Bl/6 mice. Pretreatment with glatiramer acetate (3.5 mg/kg bodyweight) 30 min before the induction of stroke did not reduce lesion volumes or improve functional outcome on day 1. Conclusions Glatiramer acetate failed to protect from acute ischemic stroke in our hands. Further studies are needed to assess the true therapeutic potential of glatiramer acetate and related immunomodulators in brain ischemia. KW - Glatiramer acetate KW - Stroke KW - Inflammation KW - Neurodegeneration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110528 ER - TY - RPRT A1 - Linker, Ralf, A. A1 - Meuth, Sven G. A1 - Magnus, Tim A1 - Korn, Thomas A1 - Kleinschnitz, Christoph T1 - Report on the 4'th scientific meeting of the "Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Nov. 2'nd - Nov. 4'th, 2012 [meeting report] N2 - From November 2nd - 4th 2012, the 4th NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Again more than 60 participants, predominantly at the doctoral student or postdoc level, gathered to share their latest findings in the fields of neurovascular research, neurodegeneration and neuroinflammation. Like in the previous years, the symposium provided an excellent platform for scientific exchange and the presentation of innovative projects in the stimulating surroundings of the Brandenburg outback. This year’s keynote lecture on the pathophysiological relevance of neuronal networks was given by Christian Gerloff, Head of the Department of Neurology at the University Clinic of Hamburg-Eppendorf. Another highlight of the meeting was the awarding of the NEUROWIND e.V. prize for young scientists working in the field of experimental neurology. The award is donated by the Merck Serono GmbH, Darmstadt, Germany and is endowed with 20.000 Euro. This year the jury decided unanimously to adjudge the award to Michael Gliem from the Department of Neurology at the University Clinic of Düsseldorf (group of Sebastian Jander), Germany, for his outstanding work on different macrophage subsets in the pathogenesis of ischemic stroke published in the Annals of Neurology in 2012. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-76407 ER - TY - JOUR A1 - Kleinschnitz, Christph A1 - Meuth, Sven G. A1 - Magnus, Tim A1 - Korn, Thomas A1 - Linker, Ralf A. T1 - Report on the 3'rd scientific meeting of the "Verein zur Förderung des Wissenschaftlichen Nachwuchses in der Neurologie" (NEUROWIND e.V.) held in Motzen, Germany, Nov. 4'th - Nov. 6'th, 2011 N2 - From November 4th- 6th 2011, the 3rd NEUROWIND e.V. meeting was held in Motzen, Brandenburg, Germany. Like in the previous years, the meeting provided an excellent platform for scientific exchange and the presentation of innovative projects for young colleagues in the fields of neurovascular research, neuroinflammation and neurodegeneration. As kick-off to the scientific sessions, Reinhard Hohlfeld, Head of the Institute for Clinical Neuroimmunology in Munich, gave an illustrious overview on the many fascinations of neuroimmunologic research. A particular highlight on the second day of the meeting was the award of the 1’st NEUROWIND e.V. prize for young academics in the field of experimental neurology. This award is posted for young colleagues under the age of 35 with a significant achievement in the field of neurovascular research, neuroinflammation or neurodegeneration and comprises an amount of 20.000 Euro, founded by Merck Serono GmbH, Darmstadt. Germany. The first prize was awarded to Ivana Nikic from Martin Kerschensteiner’s group in Munich for her brilliant work on a reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis, published in Nature Medicine in 2011. This first prize award ceremony was a great incentive for the next call for proposals now upcoming in 2012. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75388 ER - TY - JOUR A1 - Schuhmann, Michael K. A1 - Bittner, Stefan A1 - Meuth, Sven G. A1 - Kleinschnitz, Christoph A1 - Fluri, Felix T1 - Fingolimod (FTY720-P) does not stabilize the blood-brain barrier under inflammatory conditions in an in vitro model JF - International Journal of Molecular Sciences N2 - Breakdown of the blood-brain barrier (BBB) is an early hallmark of multiple sclerosis (MS), a progressive inflammatory disease of the central nervous system. Cell adhesion in the BBB is modulated by sphingosine-1-phosphate (S1P), a signaling protein, via S1P receptors (S1P\(_1\)). Fingolimod phosphate (FTY720-P) a functional S1P\(_1\) antagonist has been shown to improve the relapse rate in relapsing-remitting MS by preventing the egress of lymphocytes from lymph nodes. However, its role in modulating BBB permeabilityin particular, on the tight junction proteins occludin, claudin 5 and ZO-1has not been well elucidated to date. In the present study, FTY720-P did not change the transendothelial electrical resistance in a rat brain microvascular endothelial cell (RBMEC) culture exposed to inflammatory conditions and thus did not decrease endothelial barrier permeability. In contrast, occludin was reduced in RBMEC culture after adding FTY720-P. Additionally, FTY720-P did not alter the amount of endothelial matrix metalloproteinase (MMP)-9 and MMP-2 in RBMEC cultures. Taken together, our observations support the assumption that S1P\(_1\) plays a dual role in vascular permeability, depending on its ligand. Thus, S1P\(_1\) provides a mechanistic basis for FTY720-P-associated disruption of endothelial barrierssuch as the blood-retinal barrierwhich might result in macular edema. KW - randomized controlled trial KW - Sphingosine 1-Phosphate KW - vascular permeability KW - rat brain microvascular endothelial cell culture KW - tight junctions KW - FTY720-P KW - blood-brain barrier KW - inflammation KW - novo renal transplantation KW - endothelial cells KW - experimental autoimmune encephalomyelitis KW - relapsing multiple sclerosis KW - Zonula Occludens-1 KW - matrix metalloproteinases Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145047 VL - 16 ER - TY - JOUR A1 - Kolb-Mäurer, Annette A1 - Sunderkötter, Cord A1 - Kukowski, Borries A1 - Meuth, Sven G. T1 - An update on Peginterferon beta-1a Management in Multiple Sclerosis: results from an interdisciplinary Board of German and Austrian Neurologists and dermatologists JF - BMC Neurology N2 - Background: Interferon (IFN) beta drugs have been approved for the treatment of relapsing forms of multiple sclerosis (RMS) for more than 20years and are considered to offer a favourable benefit-risk profile. In July 2014, subcutaneous (SC) peginterferon beta-1a 125g dosed every 2weeks, a pegylated form of interferon beta-1a, was approved by the EMA for the treatment of adult patients with RRMS and in August 2014 by the FDA for RMS. Peginterferon beta-1a shows a prolonged half-life and increased systemic drug exposure resulting in a reduced dosing frequency compared to other available interferon-based products in MS. In the Phase 3 ADVANCE trial peginterferon beta-1a demonstrated significant positive effects on clinical and MRI outcome measures versus placebo after one year. Furthermore, in the ATTAIN extension study, sustained efficacy with long-term treatment for nearly 6years was shown. Main text In July 2016, an interdisciplinary panel of German and Austrian experts convened to discuss the management of side effects associated with peginterferon beta-1a and other interferon beta-based treatments in MS in daily practice. The panel was composed of experts from university hospitals and private clinics comprised of neurologists, dermatologists, and an MS nurse. In this paper we report recommendations regarding best practices for adverse event management, focussing on peginterferon beta-1a. Injection site reactions (ISRs) and influenza-like illness are the most common adverse effects of interferon beta therapies and can present a burden for MS patients leading to non-adherence and discontinuation of therapy. Peginterferon beta-1a shows improved pharmacological properties. In clinical trials, the adverse event (AE) profile of peginterferon beta-1a was similar to other interferon beta formulations. The most common AEs were mild to moderate ISRs, influenza-like illness, pyrexia, and headache. Current information on the underlying cause of skin reactions associated with SC interferon treatment, and the management strategies for these AEs are limited. In pivotal trials, ISRs were mainly characterized and classified by neurologists, while dermatologists were only rarely consulted. Conclusions This report addresses expert recommendations on the management of most relevant adverse effects related to peginterferon beta-1a and other interferon betas, based on literature and interdisciplinary experience. KW - multiple sclerosis KW - peginterferon bet-1a KW - interferon beta KW - flu-like symptoms KW - injection site reactions KW - management Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224646 VL - 19 ER - TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Vogelsang, Anna A1 - Eichler, Susann A1 - Huntemann, Niklas A1 - Masanneck, Lars A1 - Böhnlein, Hannes A1 - Schüngel, Lisa A1 - Willison, Alice A1 - Loser, Karin A1 - Nieswandt, Bernhard A1 - Kehrel, Beate E. A1 - Zarbock, Alexander A1 - Göbel, Kerstin A1 - Meuth, Sven G. T1 - Platelet inhibition by low-dose acetylsalicylic acid reduces neuroinflammation in an animal model of multiple sclerosis JF - International Journal of Molecular Sciences N2 - Aside from the established immune-mediated etiology of multiple sclerosis (MS), compelling evidence implicates platelets as important players in disease pathogenesis. Specifically, numerous studies have highlighted that activated platelets promote the central nervous system (CNS)-directed adaptive immune response early in the disease course. Platelets, therefore, present a novel opportunity for modulating the neuroinflammatory process that characterizes MS. We hypothesized that the well-known antiplatelet agent acetylsalicylic acid (ASA) could inhibit neuroinflammation by affecting platelets if applied at low-dose and investigated its effect during experimental autoimmune encephalomyelitis (EAE) as a model to study MS. We found that oral administration of low-dose ASA alleviates symptoms of EAE accompanied by reduced inflammatory infiltrates and less extensive demyelination. Remarkably, the percentage of CNS-infiltrated CD4\(^+\) T cells, the major drivers of neuroinflammation, was decreased to 40.98 ± 3.28% in ASA-treated mice compared to 56.11 ± 1.46% in control animals at the disease maximum as revealed by flow cytometry. More interestingly, plasma levels of thromboxane A\(_2\) were decreased, while concentrations of platelet factor 4 and glycoprotein VI were not affected by low-dose ASA treatment. Overall, we demonstrate that low-dose ASA could ameliorate the platelet-dependent neuroinflammatory response in vivo, thus indicating a potential treatment approach for MS. KW - acetylsalicylic acid KW - experimental autoimmune encephalomyelitis KW - platelets KW - multiple sclerosis KW - thromboxane KW - glycoprotein VI KW - platelet factor 4 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284535 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Bittner, Stefan A1 - Bobak, Nicole A1 - Hofmann, Majella-Sophie A1 - Schuhmann, Michael K. A1 - Ruck, Tobias A1 - Göbel, Kerstin A1 - Brück, Wolfgang A1 - Wiendl, Heinz A1 - Meuth, Sven G. T1 - Murine K\(_{2P}\)5.1 Deficiency Has No Impact on Autoimmune Neuroinflammation due to Compensatory K\(_{2P}\)3.1-and K\(_{V}\)1.3-Dependent Mechanisms JF - International Journal of Molecular Sciences N2 - Lymphocytes express potassium channels that regulate physiological cell functions, such as activation, proliferation and migration. Expression levels of K\(_{2P}\)5.1(TASK2; KCNK5) channels belonging to the family of two-pore domain potassium channels have previously been correlated to the activity of autoreactive T lymphocytes in patients with multiple sclerosis and rheumatoid arthritis. In humans, K\(_{2P}\)5.1 channels are upregulated upon T cell stimulation and influence T cell effector functions. However, a further clinical translation of targeting K\(_{2P}\)5.1 is currently hampered by a lack of highly selective inhibitors, making it necessary to evaluate the impact of KCNK5 in established preclinical animal disease models. We here demonstrate that K\(_{2P}\)5.1 knockout (K\(_{2P}\)5.1\(^{-/-}\) mice display no significant alterations concerning T cell cytokine production, proliferation rates, surface marker molecules or signaling pathways. In an experimental model of autoimmune neuroinflammation, K\(_{2P}\)5.1\(^{-/-}\) mice show a comparable disease course to wild-type animals and no major changes in the peripheral immune system or CNS compartment. A compensatory upregulation of the potassium channels K\(_{2P}\)3.1 and K\(_{V}\)1.3 seems to counterbalance the deletion of K\(_{2P}\)5.1. As an alternative model mimicking autoimmune neuroinflammation, experimental autoimmune encephalomyelitis in the common marmoset has been proposed, especially for testing the efficacy of new potential drugs. Initial experiments show that K\(_{2P}\)5.1 is functionally expressed on marmoset T lymphocytes, opening up the possibility for assessing future K\(_{2P}\)5.1-targeting drugs. KW - domain potassium channels KW - volume regulation KW - multiple-sclerosis KW - potassium channels KW - multiple sclerosis KW - ion channels KW - K+ channel KW - T lymphocytes KW - up-regulation KW - TASK2 KW - K2P channels KW - B cells KW - ph KW - K\(_{2P}\)5.1 KW - KCNK5 KW - autoimmune neuroinflammation KW - EAE Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151454 VL - 16 SP - 16880 EP - 16896 ER -