TY - JOUR A1 - Enigk, Fabian A1 - Wagner, Antje A1 - Samapati, Rudi A1 - Rittner, Heike A1 - Brack, Alexander A1 - Mousa, Shaaban A. A1 - Schäfer, Michael A1 - Habazettl, Helmut A1 - Schäper, Jörn T1 - Thoracic epidural anesthesia decreases endotoxin-induced endothelial injury JF - BMC Anesthesiology N2 - Background: The sympathetic nervous system is considered to modulate the endotoxin-induced activation of immune cells. Here we investigate whether thoracic epidural anesthesia with its regional symapathetic blocking effect alters endotoxin-induced leukocyte-endothelium activation and interaction with subsequent endothelial injury. Methods: Sprague Dawley rats were anesthetized, cannulated and hemodynamically monitored. E. coli lipopolysaccharide (Serotype 0127: B8, 1.5 mg x kg(-1) x h(-1)) or isotonic saline (controls) was infused for 300 minutes. An epidural catheter was inserted for continuous application of lidocaine or normal saline in endotoxemic animals and saline in controls. After 300 minutes we measured catecholamine and cytokine plasma concentrations, adhesion molecule expression, leukocyte adhesion, and intestinal tissue edema. Results: In endotoxemic animals with epidural saline, LPS significantly increased the interleukin-1 beta plasma concentration (48%), the expression of endothelial adhesion molecules E-selectin (34%) and ICAM-1 (42%), and the number of adherent leukocytes (40%) with an increase in intestinal myeloperoxidase activity (26%) and tissue edema (75%) when compared to healthy controls. In endotoxemic animals with epidural infusion of lidocaine the values were similar to those in control animals, while epinephrine plasma concentration was 32% lower compared to endotoxemic animals with epidural saline. Conclusions: Thoracic epidural anesthesia attenuated the endotoxin-induced increase of IL-1 beta concentration, adhesion molecule expression and leukocyte-adhesion with subsequent endothelial injury. A potential mechanism is the reduction in the plasma concentration of epinephrine. KW - endotoxemia KW - myeloperoxidase KW - endothelial injury KW - adhesion molecules KW - inflammatory response KW - intestinal microvascular perfusion KW - cell-adhesion KW - induced impairment KW - reperfusion injury KW - sepsis KW - neutrophil KW - lidocaine KW - lung injury KW - cytokines KW - epidural anesthesia Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116787 VL - 14 IS - 23 ER - TY - JOUR A1 - Rittner, Heike L. A1 - Wang, Ying A1 - Gehringer, Rebekka A1 - Mousa, Shaaban A. A1 - Hackel, Dagmar A1 - Brack, Alexander T1 - CXCL10 Controls Inflammatory Pain via Opioid Peptide- Containing Macrophages in Electroacupuncture N2 - Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture. KW - opioids KW - inflammation KW - macrophages KW - cytokines KW - chemokines KW - enzyme-linkes immunoassays KW - acupuncture KW - analysis of variance Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112979 ER - TY - JOUR A1 - Rittner, Heike Lydia A1 - Hackel, Dagmar A1 - Pflücke, Diana A1 - Neumann, Annick A1 - Viebahn, Johannes A1 - Mousa, Shaaban A1 - Wischmeyer, Erhard A1 - Roewer, Norbert A1 - Brack, Alexander T1 - The Connection of Monocytes and Reactive Oxygen Species in Pain JF - PLoS ONE N2 - The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47phox, a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy. KW - analysis of variance KW - chemokines KW - hyperalgesia KW - inflammation KW - macrophages KW - monocytes KW - white blood cells KW - wistar rats Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96669 ER - TY - JOUR A1 - Rittner, Heike L. A1 - Sauer, Reine-Solange A1 - Hackel, Dagmar A1 - Morschel, Laura A1 - Sahlbach, Henrike A1 - Wang, Ying A1 - Mousa, Shaaban A. A1 - Roewer, Norbert A1 - Brack, Alexander T1 - Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation N2 - Background Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund’s adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. Results In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48–96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. Conclusion Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly transiently enhance pain by impairing peripheral opioid analgesia. KW - Toll like receptors KW - Analgesia KW - Inflammatory pain KW - Endogenous opioids Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110193 ER -