TY - JOUR A1 - Steinert, Andre F. A1 - Kunz, Manuela A1 - Prager, Patrick A1 - Göbel, Sascha A1 - Klein-Hitpass, Ludger A1 - Ebert, Regina A1 - Nöth, Ulrich A1 - Jakob, Franz A1 - Gohlke, Frank T1 - Characterization of bursa subacromialis-derived mesenchymal stem cells JF - Stem Cell Research & Therapy N2 - Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was \(CD44^+, CD73^+, CD90^+, CD105^+, CD106^+\),\(STRO-1^+, CD14^−, CD31^−, CD34^− , CD45^−, CD144^−\). Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126446 VL - 6 IS - 114 ER - TY - JOUR A1 - Jakob, Franz A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Nöth, Ulrich A1 - Walles, Heike A1 - Docheva, Denitsa A1 - Schieker, Matthias A1 - Meinel, Lorenz A1 - Groll, Jürgen T1 - In situ guided tissue regeneration in musculoskeletal diseases and aging JF - Cell and Tissue Research N2 - In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide “minimal invasive” applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future. KW - in situ guided tissue regeneration KW - stem cells KW - scaffolds KW - regenerative medicine KW - mesenchymal tissues Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124738 VL - 347 IS - 3 ER - TY - JOUR A1 - Rackwitz, Lars A1 - Eden, Lars A1 - Reppenhagen, Stephan A1 - Reichert, Johannes C. A1 - Jakob, Franz A1 - Walles, Heike A1 - Pullig, Oliver A1 - Tuan, Rocky S. A1 - Rudert, Maximilian A1 - Nöth, Ulrich T1 - Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head JF - Stem Cell Research & Therapy N2 - Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN. KW - osteochondral allografts KW - autologous chondrocyte implantation KW - osteogenesis imperfecta KW - segmental collapse KW - mesenchymal cells KW - progenitor cells KW - stromal cells KW - sheep model KW - colony-stimulating factor KW - core depression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135413 VL - 3 IS - 7 ER - TY - JOUR A1 - Reichert, Johannes A1 - Schmalzl, Jonas A1 - Prager, Patrick A1 - Gilbert, Fabian A1 - Quent, Verena M. C. A1 - Steinert, Andre F. A1 - Rudert, Maximilian A1 - Nöth, Ulrich T1 - Synergistic effect of Indian hedgehog and bone morphogenetic protein-2 gene transfer to increase the osteogenic potential of human mesenchymal stem cells JF - Stem Cell Research & Therapy N2 - Introduction To stimulate healing of large bone defects research has concentrated on the application of mesenchymal stem cells (MSCs). Methods In the present study, we induced the overexpression of the growth factors bone morphogenetic protein 2 (BMP-2) and/or Indian hedgehog (IHH) in human MSCs by adenoviral transduction to increase their osteogenic potential. GFP and nontransduced MSCs served as controls. The influence of the respective genetic modification on cell metabolic activity, proliferation, alkaline phosphatase (ALP) activity, mineralization in cell culture, and osteogenic marker gene expression was investigated. Results Transduction had no negative influence on cell metabolic activity or proliferation. ALP activity showed a typical rise-and-fall pattern with a maximal activity at day 14 and 21 after osteogenic induction. Enzyme activity was significantly higher in groups cultured with osteogenic media. The overexpression of BMP-2 and especially IHH + BMP-2 resulted in a significantly higher mineralization after 28 days. This was in line with obtained quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analyses, which showed a significant increase in osteopontin and osteocalcin expression for osteogenically induced BMP-2 and IHH + BMP-2 transduced cells when compared with the other groups. Moreover, an increase in runx2 expression was observed in all osteogenic groups toward day 21. It was again more pronounced for BMP-2 and IHH + BMP-2 transduced cells cultured in osteogenic media. Conclusions In summary, viral transduction did not negatively influence cell metabolic activity and proliferation. The overexpression of BMP-2 in combination with or without IHH resulted in an increased deposition of mineralized extracellular matrix, and expression of osteogenic marker genes. Viral transduction therefore represents a promising means to increase the osteogenic potential of MSCs and the combination of different transgenes may result in synergistic effects. KW - Medizin Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97010 UR - http://stemcellres.com/content/4/5/105 ER - TY - JOUR A1 - Steinert, Andre F. A1 - Weissenberger, Manuel A1 - Kunz, Manuela A1 - Gilbert, Fabian A1 - Ghivizzani, Steven C. A1 - Goebel, Sascha A1 - Jakob, Franz A1 - Nöth, Ulrich A1 - Rudert, Maximilian T1 - Indian hedgehog gene transfer is a chondrogenic inducer of human mesenchymal stem cells N2 - Introduction: To date, no single most-appropriate factor or delivery method has been identified for the purpose of mesenchymal stem cell (MSC)-based treatment of cartilage injury. Therefore, in this study we tested whether gene delivery of the growth factor Indian hedgehog (IHH) was able to induce chondrogenesis in human primary MSCs, and whether it was possible by such an approach to modulate the appearance of chondrogenic hypertrophy in pellet cultures in vitro. Methods: First-generation adenoviral vectors encoding the cDNA of the human IHH gene were created by cre-lox recombination and used alone or in combination with adenoviral vectors, bone morphogenetic protein-2 (Ad.BMP- 2), or transforming growth factor beta-1 (Ad.TGF-b1) to transduce human bone-marrow derived MSCs at 5 × 102 infectious particles/cell. Thereafter, 3 × 105 cells were seeded into aggregates and cultured for 3 weeks in serumfree medium, with untransduced or marker gene transduced cultures as controls. Transgene expressions were determined by ELISA, and aggregates were analysed histologically, immunohistochemically, biochemically and by RT-PCR for chondrogenesis and hypertrophy. Results: IHH, TGF-b1 and BMP-2 genes were equipotent inducers of chondrogenesis in primary MSCs, as evidenced by strong staining for proteoglycans, collagen type II, increased levels of glycosaminoglycan synthesis, and expression of mRNAs associated with chondrogenesis. IHH-modified aggregates, alone or in combination, also showed a tendency to progress towards hypertrophy, as judged by the expression of alkaline phosphatase and stainings for collagen type X and Annexin 5. Conclusion: As this study provides evidence for chondrogenic induction of MSC aggregates in vitro via IHH gene delivery, this technology may be efficiently employed for generating cartilaginous repair tissues in vivo. KW - Medizin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75425 ER - TY - JOUR A1 - Arnholdt, Jörg A1 - Gilbert, Fabian A1 - Blank, Marc A1 - Papazoglou, Jannis A1 - Rudert, Maximilian A1 - Nöth, Ulrich A1 - Steinert, Andre F. T1 - The Mayo conservative hip: complication analysis and management of the first 41 cases performed at a University level 1 department JF - BMC Muskoskeletal Disorders N2 - Background: To prevent bone loss in hip arthroplasty, several short stem systems have been developed, including the Mayo conservative hip system. While there is a plethora of data confirming inherent advantages of these systems, only little is known about potential complications, especially when surgeons start to use these systems. Methods: In this study, we present a retrospective analysis of the patients’ outcome, complications and the complication management of the first 41 Mayo conservative hips performed in 37 patients. For this reason, functional scores, radiographic analyses, peri- and postoperative complications were assessed at an average follow-up of 35 months. Results: The overall HHS improved from 61.2 pre-operatively to 85.6 post-operatively. The German Extra Short Musculoskeletal Function Assessment Questionnaire (XSFMA-D) improved from 30.3 pre-operatively to 12.2 post-operatively. The most common complication was an intraoperative non-displaced fracture of the proximal femur observed in 5 cases (12.1%). Diabetes, higher BMI and older ages were shown to be risk factors for these intra-operative periprosthetic fractures (p < 0.01). Radiographic analysis revealed a good offset reconstruction in all cases. Conclusion: In our series, a high complication rate with 12.1% of non-displaced proximal femoral fractures was observed using the Mayo conservative hip. This may be attributed to the flat learning curve of the system or the inherent patient characteristics of the presented cohort." KW - total hip arthroplasty KW - short hip stem KW - mayo stem KW - minimal invasive surgery Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157812 VL - 18 IS - 250 ER - TY - JOUR A1 - Reichert, Johannes C. A1 - von Rottkay, Eberhard A1 - Roth, Franz A1 - Renz, Tim A1 - Hausmann, Johannes A1 - Kranz, Julius A1 - Rackwitz, Lars A1 - Nöth, Ulrich A1 - Rudert, Maximilian T1 - A prospective randomized comparison of the minimally invasive direct anterior and the transgluteal approach for primary total hip arthroplasty JF - BMC Musculoskeletal Disorders N2 - Background: The presented prospective randomized controlled single-centre study compares the clinical outcome up to 12 months after total hip arthroplasty using a minimally invasive single-incision direct anterior (DAA) and a direct transgluteal lateral approach. Methods: A total of 123 arthroplasties were evaluated utilizing the Harris Hip Score (HHS), the extra short musculoskeletal functional assessment questionnaire (XSFMA), the Short Form 36 (SF-36) health survey, a Stepwatch™ Activity Monitor (SAM), and a timed 25 m foot walk (T25-FW). Postoperative x-ray images after THA were reviewed to determine inclination and stem positioning. Results: At final follow-up, the XSFMA functional index scores were 10.3 (anterior) and 15.08 (lateral) while the bother index summed up to a score of 15.8 (anterior) and 21.66 (lateral) respectively, thus only differing significantly for the functional index (p = 0.040 and p = 0.056). The SF-36 physical component score (PCS) was 47.49 (anterior) and 42.91 (lateral) while the mental component score (MCS) summed up to 55.0 (anterior) and 56.23 (lateral) with a significant difference evident for the PCS (p = 0.017; p = 0.714). Patients undergoing THA through a DAA undertook a mean of 6402 cycles per day while those who had undergone THA through a transgluteal approach undertook a mean of 5340 cycles per day (p = 0.012). Furthermore, the obtained outcome for the T25-FW with 18.4 s (anterior) and 19.75 s (lateral) and the maximum walking distance (5932 m and 5125 m) differed significantly (p = 0.046 and p = 0.045). The average HHS showed no significant difference equaling 92.4 points in the anterior group and 91.43 in the lateral group (p = 0.477). The radiographic analysis revealed an average cup inclination of 38.6° (anterior) and 40.28° (lateral) without signs of migration. Conclusion: In summary, our outcomes show that after 1 year THA through the direct anterior approach results in a higher patient activity compared to THA utilizing a transgluteal lateral approach while no differences regarding hip function are evident. KW - total hip arthroplasty KW - direct anterior approach KW - minimally invasive KW - transgluteal approach KW - prospective study Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176072 VL - 19 IS - 241 ER -