TY - JOUR A1 - vom Dahl, Christian A1 - Müller, Christoph Emanuel A1 - Berisha, Xhevat A1 - Nagel, Georg A1 - Zimmer, Thomas T1 - Coupling the cardiac voltage-gated sodium channel to channelrhodopsin-2 generates novel optical switches for action potential studies JF - Membranes N2 - Voltage-gated sodium (Na\(^+\)) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na\(^+\) influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na\(^+\) channel (Na\(_v\)1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Na\(_v\)1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K\(^+\) channels on the AP shape, we co-expressed either K\(_v\)1.2 or hERG with one of the Na\(_v\)1.5-ChR2 fusions. As expected, both delayed rectifier K\(^+\) channels shortened AP duration significantly. K\(_v\)1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na\(^+\) current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na\(^+\) channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering. KW - optogenetics KW - channelrhodopsin KW - voltage-gated Na\(^+\) channel KW - action potential KW - delayed rectifier potassium channel KW - hERG KW - long QT syndrome Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288228 SN - 2077-0375 VL - 12 IS - 10 ER - TY - JOUR A1 - Panzer, Sabine A1 - Zhang, Chong A1 - Konte, Tilen A1 - Bräuer, Celine A1 - Diemar, Anne A1 - Yogendran, Parathy A1 - Yu-Strzelczyk, Jing A1 - Nagel, Georg A1 - Gao, Shiqiang A1 - Terpitz, Ulrich T1 - Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates JF - Frontiers in Molecular Biosciences N2 - Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications. KW - black yeast KW - photoreceptor KW - microbial rhodopsins KW - optogenetics KW - proton channel KW - membrane trafficking KW - fungal rhodopsins KW - Aureobasidium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249248 SN - 2296-889X VL - 8 ER - TY - JOUR A1 - Tang, Ruijing A1 - Yang, Shang A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - mem-iLID, a fast and economic protein purification method JF - Bioscience Reports N2 - Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein–protein interaction. KW - light-induced dimerization KW - membrane anchor KW - Optogenetics KW - protein purification Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261420 VL - 41 IS - 7 ER - TY - JOUR A1 - Tian, Yuehui A1 - Yang, Shang A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Characterization and modification of light-sensitive phosphodiesterases from choanoflagellates JF - Biomolecules N2 - Enzyme rhodopsins, including cyclase opsins (Cyclops) and rhodopsin phosphodiesterases (RhoPDEs), were recently discovered in fungi, algae and protists. In contrast to the well-developed light-gated guanylyl/adenylyl cyclases as optogenetic tools, ideal light-regulated phosphodiesterases are still in demand. Here, we investigated and engineered the RhoPDEs from Salpingoeca rosetta, Choanoeca flexa and three other protists. All the RhoPDEs (fused with a cytosolic N-terminal YFP tag) can be expressed in Xenopus oocytes, except the AsRhoPDE that lacks the retinal-binding lysine residue in the last (8th) transmembrane helix. An N296K mutation of YFP::AsRhoPDE enabled its expression in oocytes, but this mutant still has no cGMP hydrolysis activity. Among the RhoPDEs tested, SrRhoPDE, CfRhoPDE1, 4 and MrRhoPDE exhibited light-enhanced cGMP hydrolysis activity. Engineering SrRhoPDE, we obtained two single point mutants, L623F and E657Q, in the C-terminal catalytic domain, which showed ~40 times decreased cGMP hydrolysis activity without affecting the light activation ratio. The molecular characterization and modification will aid in developing ideal light-regulated phosphodiesterase tools in the future. KW - choanoflagellates KW - optogenetics KW - rhodopsin phosphodiesterase (RhoPDE) KW - cGMP Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-254769 SN - 2218-273X VL - 12 IS - 1 ER - TY - JOUR A1 - Zhou, Yang A1 - Ding, Meiqi A1 - Duan, Xiaodong A1 - Konrad, Kai R. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Extending the Anion Channelrhodopsin-Based Toolbox for Plant Optogenetics JF - Membranes N2 - Optogenetics was developed in the field of neuroscience and is most commonly using light-sensitive rhodopsins to control the neural activities. Lately, we have expanded this technique into plant science by co-expression of a chloroplast-targeted β-carotene dioxygenase and an improved anion channelrhodopsin GtACR1 from the green alga Guillardia theta. The growth of Nicotiana tabacum pollen tube can then be manipulated by localized green light illumination. To extend the application of analogous optogenetic tools in the pollen tube system, we engineered another two ACRs, GtACR2, and ZipACR, which have different action spectra, light sensitivity and kinetic features, and characterized them in Xenopus laevis oocytes, Nicotiana benthamiana leaves and N. tabacum pollen tubes. We found that the similar molecular engineering method used to improve GtACR1 also enhanced GtACR2 and ZipACR performance in Xenopus laevis oocytes. The ZipACR1 performed in N. benthamiana mesophyll cells and N. tabacum pollen tubes with faster kinetics and reduced light sensitivity, allowing for optogenetic control of anion fluxes with better temporal resolution. The reduced light sensitivity would potentially facilitate future application in plants, grown under low ambient white light, combined with an optogenetic manipulation triggered by stronger green light. KW - optogenetics KW - rhodopsin KW - light-sensitive anion channel KW - surface potential recording KW - pollen tube Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236617 SN - 2077-0375 VL - 11 IS - 4 ER -