TY - JOUR A1 - Tian, Yuehui A1 - Gao, Shiqiang A1 - von der Heyde, Eva Laura A1 - Hallmann, Armin A1 - Nagel, Georg T1 - Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases JF - BMC Biology N2 - Background: The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics. Results: Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called “two-component cyclase opsins” (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery. Conclusions: Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery. KW - chlamydomonas reinhardtii KW - volvox carteri KW - two-component system KW - chlamyopsin KW - optogenetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177516 VL - 16 IS - 144 ER - TY - JOUR A1 - Beck, Sebastian A1 - Yu-Strzelczyk, Jing A1 - Pauls, Dennis A1 - Constantin, Oana M. A1 - Gee, Christine E. A1 - Ehmann, Nadine A1 - Kittel, Robert J. A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Synthetic light-activated ion channels for optogenetic activation and inhibition JF - Frontiers in Neuroscience N2 - Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2\(^{2+}\)) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca\(^{2+}\) might be desirable. Moreover, there is need for an efficient light-gated potassium (K\(^{+}\)) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca\(^{2+}\) and K\(^{+}\) in cell physiology, light-activated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca\(^{2+}\)-permeant and K\(^{+}\)-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca\(^{2+}\) or for K\(^{+}\), respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca\(^{2+}\)-permeant channel, and to body extension when expressing the light-sensitive K\(^{+}\) channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons. KW - optogenetics KW - calcium KW - potassium KW - bPAC KW - CNG channel KW - cAMP KW - Drosophila melanogaster motoneuron KW - rat hippocampal neurons Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177520 VL - 12 IS - 643 ER - TY - JOUR A1 - Scheib, Ulrike A1 - Broser, Matthias A1 - Constantin, Oana M. A1 - Yang, Shang A1 - Gao, Shiqiang A1 - Mukherjee, Shatanik A1 - Stehfest, Katja A1 - Nagel, Georg A1 - Gee, Christine E. A1 - Hegemann, Peter T1 - Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain JF - Nature Communications N2 - The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsinguanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio > 1000. After light excitation the putative signaling state forms with tau = 31 ms and decays with tau = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 angstrom) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. KW - Enzymes KW - Molecular biophysics KW - Molecular neuroscience KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228517 VL - 9 ER - TY - JOUR A1 - Gao, Shiqiang A1 - Nagpal, Jatin A1 - Schneider, Martin W. A1 - Kozjak-Pavlovic, Vera A1 - Nagel, Georg A1 - Gottschalk, Alexander T1 - Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp JF - Nature Communications N2 - Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ~17 cGMPs\(^{-1}\)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O\(_2\)/CO\(_2\) sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals. KW - carbon dioxide avoidance KW - III adenylyl cyclases KW - rhodopsin KW - in vivo KW - optical control KW - Halobacterium halobium KW - C. elegans KW - cellular camp KW - Caenorhabditis elegans KW - nucleotide-gated channel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148197 VL - 6 IS - 8046 ER - TY - JOUR A1 - Schultheis, Christian A1 - Liewald, Jana Fiona A1 - Bamberg, Ernst A1 - Nagel, Georg A1 - Gottschalk, Alexander T1 - Optogenetic Long-Term Manipulation of Behavior and Animal Development JF - PLoS ONE N2 - Channelrhodopsin-2 (ChR2) is widely used for rapid photodepolarization of neurons, yet, as it requires high-intensity blue light for activation, it is not suited for long-term in vivo applications, e. g. for manipulations of behavior, or photoactivation of neurons during development. We used "slow" ChR2 variants with mutations in the C128 residue, that exhibit delayed off-kinetics and increased light sensitivity in Caenorhabditis elegans. Following a 1 s light pulse, we could photodepolarize neurons and muscles for minutes (and with repeated brief stimulation, up to days) with low-intensity light. Photoactivation of ChR2(C128S) in command interneurons elicited long-lasting alterations in locomotion. Finally, we could optically induce profound changes in animal development: Long-term photoactivation of ASJ neurons, which regulate larval growth, bypassed the constitutive entry into the "dauer" larval state in daf-11 mutants. These lack a guanylyl cyclase, which possibly renders ASJ neurons hyperpolarized. Furthermore, photostimulated ASJ neurons could acutely trigger dauer-exit. Thus, slow ChR2s can be employed to long-term photoactivate behavior and to trigger alternative animal development. KW - Nematode Caenorhabditis-elegans KW - C-elegans KW - Millisecond-timescale KW - Chemosensory neurons KW - Glutamate-receptor KW - Larval development KW - Optical control KW - Dauer formation KW - Channelrhodopsin-2 KW - Pheromone Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141250 VL - 6 IS - 4 ER - TY - JOUR A1 - Huang, Shouguang A1 - Ding, Meiqi A1 - Roelfsema, M. Rob G. A1 - Dreyer, Ingo A1 - Scherzer, Sönke A1 - Al-Rasheid, Khaled A. S A1 - Gao, Shiqiang A1 - Nagel, Georg A1 - Hedrich, Rainer A1 - Konrad, Kai R. T1 - Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1 JF - Science Advances N2 - Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata. KW - abscisic-acid activation KW - Arabidopsis thaliana KW - H+-atpase KW - signal transduction KW - potassium channel KW - intact plants KW - K+ channels KW - R-type KW - CO2 KW - SLAC1 Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260925 VL - 7 IS - 28 ER - TY - JOUR A1 - Duan, Xiaodong A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - Mutated channelrhodopsins with increased sodium and calcium permeability JF - Applied Sciences N2 - (1) Background: After the discovery and application of Chlamydomonas reinhardtii channelrhodopsins, the optogenetic toolbox has been greatly expanded with engineered and newly discovered natural channelrhodopsins. However, channelrhodopsins of higher Ca\(^{2+}\) conductance or more specific ion permeability are in demand. (2) Methods: In this study, we mutated the conserved aspartate of the transmembrane helix 4 (TM4) within Chronos and PsChR and compared them with published ChR2 aspartate mutants. (3) Results: We found that the ChR2 D156H mutant (XXM) showed enhanced Na\(^+\) and Ca\(^{2+}\) conductance, which was not noticed before, while the D156C mutation (XXL) influenced the Na\(^+\) and Ca\(^{2+}\) conductance only slightly. The aspartate to histidine and cysteine mutations of Chronos and PsChR also influenced their photocurrent, ion permeability, kinetics, and light sensitivity. Most interestingly, PsChR D139H showed a much-improved photocurrent, compared to wild type, and even higher Na+ selectivity to H\(^+\) than XXM. PsChR D139H also showed a strongly enhanced Ca\(^{2+}\) conductance, more than two-fold that of the CatCh. (4) Conclusions: We found that mutating the aspartate of the TM4 influences the ion selectivity of channelrhodopsins. With the large photocurrent and enhanced Na\(^+\) selectivity and Ca\(^{2+}\) conductance, XXM and PsChR D139H are promising powerful optogenetic tools, especially for Ca\(^{2+}\) manipulation. KW - optogenetics KW - channelrhodopsins KW - sodium KW - calcium KW - DC gate Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197435 SN - 2076-3417 VL - 9 IS - 4 ER - TY - JOUR A1 - Panzer, Sabine A1 - Zhang, Chong A1 - Konte, Tilen A1 - Bräuer, Celine A1 - Diemar, Anne A1 - Yogendran, Parathy A1 - Yu-Strzelczyk, Jing A1 - Nagel, Georg A1 - Gao, Shiqiang A1 - Terpitz, Ulrich T1 - Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates JF - Frontiers in Molecular Biosciences N2 - Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications. KW - black yeast KW - photoreceptor KW - microbial rhodopsins KW - optogenetics KW - proton channel KW - membrane trafficking KW - fungal rhodopsins KW - Aureobasidium Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249248 SN - 2296-889X VL - 8 ER - TY - JOUR A1 - Tang, Ruijing A1 - Yang, Shang A1 - Nagel, Georg A1 - Gao, Shiqiang T1 - mem-iLID, a fast and economic protein purification method JF - Bioscience Reports N2 - Protein purification is the vital basis to study the function, structure and interaction of proteins. Widely used methods are affinity chromatography-based purifications, which require different chromatography columns and harsh conditions, such as acidic pH and/or adding imidazole or high salt concentration, to elute and collect the purified proteins. Here we established an easy and fast purification method for soluble proteins under mild conditions, based on the light-induced protein dimerization system improved light-induced dimer (iLID), which regulates protein binding and release with light. We utilize the biological membrane, which can be easily separated by centrifugation, as the port to anchor the target proteins. In Xenopus laevis oocyte and Escherichia coli, the blue light-sensitive part of iLID, AsLOV2-SsrA, was targeted to the plasma membrane by different membrane anchors. The other part of iLID, SspB, was fused with the protein of interest (POI) and expressed in the cytosol. The SspB-POI can be captured to the membrane fraction through light-induced binding to AsLOV2-SsrA and then released purely to fresh buffer in the dark after simple centrifugation and washing. This method, named mem-iLID, is very flexible in scale and economic. We demonstrate the quickly obtained yield of two pure and fully functional enzymes: a DNA polymerase and a light-activated adenylyl cyclase. Furthermore, we also designed a new SspB mutant for better dissociation and less interference with the POI, which could potentially facilitate other optogenetic manipulations of protein–protein interaction. KW - light-induced dimerization KW - membrane anchor KW - Optogenetics KW - protein purification Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261420 VL - 41 IS - 7 ER - TY - JOUR A1 - Scholz, Nicole A1 - Guan, Chonglin A1 - Nieberler, Matthias A1 - Grotmeyer, Alexander A1 - Maiellaro, Isabella A1 - Gao, Shiqiang A1 - Beck, Sebastian A1 - Pawlak, Matthias A1 - Sauer, Markus A1 - Asan, Esther A1 - Rothemund, Sven A1 - Winkler, Jana A1 - Prömel, Simone A1 - Nagel, Georg A1 - Langenhan, Tobias A1 - Kittel, Robert J T1 - Mechano-dependent signaling by Latrophilin/CIRL quenches cAMP in proprioceptive neurons JF - eLife N2 - Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response. KW - Latrophilin KW - adhesion GPCR KW - dCIRL KW - sensory physiology KW - metabotropic signalling KW - mechanotransduction Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170520 VL - 6 IS - e28360 ER -