TY - JOUR A1 - Baur, Florentin A1 - Nietzer, Sarah L. A1 - Kunz, Meik A1 - Saal, Fabian A1 - Jeromin, Julian A1 - Matschos, Stephanie A1 - Linnebacher, Michael A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun T1 - Connecting cancer pathways to tumor engines: a stratification tool for colorectal cancer combining human in vitro tissue models with boolean in silico models JF - Cancers N2 - To improve and focus preclinical testing, we combine tumor models based on a decellularized tissue matrix with bioinformatics to stratify tumors according to stage-specific mutations that are linked to central cancer pathways. We generated tissue models with BRAF-mutant colorectal cancer (CRC) cells (HROC24 and HROC87) and compared treatment responses to two-dimensional (2D) cultures and xenografts. As the BRAF inhibitor vemurafenib is—in contrast to melanoma—not effective in CRC, we combined it with the EGFR inhibitor gefitinib. In general, our 3D models showed higher chemoresistance and in contrast to 2D a more active HGFR after gefitinib and combination-therapy. In xenograft models murine HGF could not activate the human HGFR, stressing the importance of the human microenvironment. In order to stratify patient groups for targeted treatment options in CRC, an in silico topology with different stages including mutations and changes in common signaling pathways was developed. We applied the established topology for in silico simulations to predict new therapeutic options for BRAF-mutated CRC patients in advanced stages. Our in silico tool connects genome information with a deeper understanding of tumor engines in clinically relevant signaling networks which goes beyond the consideration of single drivers to improve CRC patient stratification. KW - in silico simulation KW - 3D tissue models KW - colorectal cancer KW - BRAF mutation KW - targeted therapy KW - stratification Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193798 SN - 2072-6694 VL - 12 IS - 1 ER - TY - JOUR A1 - Kühnemundt, Johanna A1 - Leifeld, Heidi A1 - Scherg, Florian A1 - Schmitt, Matthias A1 - Nelke, Lena C. A1 - Schmitt, Tina A1 - Bauer, Florentin A1 - Göttlich, Claudia A1 - Fuchs, Maximilian A1 - Kunz, Meik A1 - Peindl, Matthias A1 - Brähler, Caroline A1 - Kronenthaler, Corinna A1 - Wischhusen, Jörg A1 - Prelog, Martina A1 - Walles, Heike A1 - Dandekar, Thomas A1 - Dandekar, Gudrun A1 - Nietzer, Sarah L. T1 - Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing JF - ALTEX N2 - High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments. KW - modular tumor tissue models KW - invasiveness KW - bioreactor culture KW - combinatorial drug predictions KW - immunotherapies Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231465 VL - 38 ER -