TY - JOUR A1 - Suliman, Salwa A1 - Mustafa, Kamal A1 - Krueger, Anke A1 - Steinmüller-Nethl, Doris A1 - Finne-Wistrand, Anna A1 - Osdal, Tereza A1 - Hamza, Amani O. A1 - Sun, Yang A1 - Parajuli, Himalaya A1 - Waag, Thilo A1 - Nickel, Joachim A1 - Johannessen, Anne Christine A1 - McCormack, Emmet A1 - Costea, Daniela Elena T1 - Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes JF - Biomaterials N2 - This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOK\(^{Luc}\)) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOK\(^{Luc}\) previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOK\(^{Luc}\) + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOK\(^{Luc}\) both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOK\(^{Luc}\) + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOK\(^{Luc}\), while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities. KW - Bone morphogenetic protein-2 KW - Sinus floor augmentation KW - Marrow stromal cells KW - Growth; BMP-2 KW - Tumorigenicity KW - Biodegradable polymer scaffolds KW - Mandibular continuity defects KW - Squamous-cell carcinoma KW - In-vitro KW - Mesenchymal transition KW - BMP-2 KW - Bone tissue engineering KW - Biocompatibility KW - Microenvironment KW - Oral squamous cell carcinoma Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-188287 VL - 95 ER -