TY - JOUR A1 - Wieser, Matthias J. A1 - Gerdes, Antje B. M. A1 - Reicherts, Philipp A1 - Pauli, Paul T1 - Mutual influences of pain and emotional face processing JF - Frontiers in Psychology N2 - The perception of unpleasant stimuli enhances whereas the perception of pleasant stimuli decreases pain perception. In contrast, the effects of pain on the processing of emotional stimuli are much less known. Especially given the recent interest in facial expressions of pain as a special category of emotional stimuli, a main topic in this research line is the mutual influence of pain and facial expression processing. Therefore, in this mini-review we selectively summarize research on the effects of emotional stimuli on pain, but more extensively turn to the opposite direction namely how pain influences concurrent processing of affective stimuli such as facial expressions. Based on the motivational priming theory one may hypothesize that the perception of pain enhances the processing of unpleasant stimuli and decreases the processing of pleasant stimuli. This review reveals that the literature is only partly consistent with this assumption: pain reduces the processing of pleasant pictures and happy facial expressions, but does not – or only partly – affect processing of unpleasant pictures. However, it was demonstrated that pain selectively enhances the processing of facial expressions if these are pain-related (i.e., facial expressions of pain). Extending a mere affective modulation theory, the latter results suggest pain-specific effects which may be explained by the perception-action model of empathy. Together, these results underscore the important mutual influence of pain and emotional face processing. KW - emotion KW - facial expression KW - ERPs KW - perception-action KW - pain Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118446 SN - 1664-1078 VL - 5 ER - TY - JOUR A1 - Ewald, Heike A1 - Glotzbach-Schoon, Evelyn A1 - Gerdes, Antje B. M. A1 - Andreatta, Marta A1 - Müller, Mathias A1 - Mühlberger, Andreas A1 - Pauli, Paul T1 - Delay and trace fear conditioning in a complex virtual learning environment - neural substrates of extinction JF - Frontiers in Human Neuroscience N2 - Extinction is an important mechanism to inhibit initially acquired fear responses. There is growing evidence that the ventromedial prefrontal cortex (vmPFC) inhibits the amygdala and therefore plays an important role in the extinction of delay fear conditioning. To our knowledge, there is no evidence on the role of the prefrontal cortex in the extinction of trace conditioning up to now. Thus, we compared brain structures involved in the extinction of human delay and trace fear conditioning in a between-subjects-design in an fMRI study. Participants were passively guided through a virtual environment during learning and extinction of conditioned fear. Two different lights served as conditioned stimuli (CS); as unconditioned stimulus (US) a mildly painful electric stimulus was delivered. In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), whereas in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Both groups showed insular and striatal activation during early extinction, but differed in their prefrontal activation. The vmPFC was mainly activated in the DCG, whereas the TCG showed activation of the dorsolateral prefrontal cortex (dlPFC) during extinction. These results point to different extinction processes in delay and trace conditioning. VmPFC activation during extinction of delay conditioning might reflect the inhibition of the fear response. In contrast, dlPFC activation during extinction of trace conditioning may reflect modulation of working memory processes which are involved in bridging the trace interval and hold information in short term memory. KW - prefrontal cortex KW - delay conditioning KW - trace conditioning KW - extinction KW - virtual reality KW - fMRI KW - medial prefrontal cortex KW - event-related FMRI KW - orbifrontal cortex KW - contextual fear Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116230 SN - 1662-5161 VL - 8 IS - 323 ER - TY - JOUR A1 - Pohl, Carsten A1 - Kunde, Wilfried A1 - Ganz, Thomas A1 - Conzelmann, Annette A1 - Pauli, Paul A1 - Kiesel, Andrea T1 - Gaming to see: action video gaming is associated with enhanced processing of masked stimuli N2 - Recent research revealed that action video game players outperform non-players in a wide range of attentional, perceptual and cognitive tasks. Here we tested if expertise in action video games is related to differences regarding the potential of shortly presented stimuli to bias behavior. In a response priming paradigm, participants classified four animal pictures functioning as targets as being smaller or larger than a reference frame. Before each target, one of the same four animal pictures was presented as a masked prime to influence participants' responses in a congruent or incongruent way. Masked primes induced congruence effects, that is, faster responses for congruent compared to incongruent conditions, indicating processing of hardly visible primes. Results also suggested that action video game players showed a larger congruence effect than non-players for 20 ms primes, whereas there was no group difference for 60 ms primes. In addition, there was a tendency for action video game players to detect masked primes for some prime durations better than non-players. Thus, action video game expertise may be accompanied by faster and more efficient processing of shortly presented visual stimuli. KW - video gaming masked stimuli KW - masked priming KW - action videogaming KW - unconscious processing KW - prime visibility KW - expertise Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112681 ER - TY - JOUR A1 - Wieser, Matthias J. A1 - Flaisch, Tobias A1 - Pauli, Paul T1 - Raised Middle-Finger: Electrocortical Correlates of Social Conditioning with Nonverbal Affective Gestures N2 - Humans form impressions of others by associating persons (faces) with negative or positive social outcomes. This learning process has been referred to as social conditioning. In everyday life, affective nonverbal gestures may constitute important social signals cueing threat or safety, which therefore may support aforementioned learning processes. In conventional aversive conditioning, studies using electroencephalography to investigate visuocortical processing of visual stimuli paired with danger cues such as aversive noise have demonstrated facilitated processing and enhanced sensory gain in visual cortex. The present study aimed at extending this line of research to the field of social conditioning by pairing neutral face stimuli with affective nonverbal gestures. To this end, electro-cortical processing of faces serving as different conditioned stimuli was investigated in a differential social conditioning paradigm. Behavioral ratings and visually evoked steady-state potentials (ssVEP) were recorded in twenty healthy human participants, who underwent a differential conditioning procedure in which three neutral faces were paired with pictures of negative (raised middle finger), neutral (pointing), or positive (thumbs-up) gestures. As expected, faces associated with the aversive hand gesture (raised middle finger) elicited larger ssVEP amplitudes during conditioning. Moreover, theses faces were rated as to be more arousing and unpleasant. These results suggest that cortical engagement in response to faces aversively conditioned with nonverbal gestures is facilitated in order to establish persistent vigilance for social threat-related cues. This form of social conditioning allows to establish a predictive relationship between social stimuli and motivationally relevant outcomes. KW - analysis of variance KW - face KW - behavioral conditioning KW - conditioned response KW - semiotics KW - non-verbal communication KW - amygdala KW - human learning Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113061 ER -