TY - JOUR A1 - Lapa, Constantin A1 - Arias-Loza, Paula A1 - Hayakawa, Nobuyuki A1 - Wakabayashi, Hiroshi A1 - Werner, Rudolf A. A1 - Chen, Xinyu A1 - Shinaji, Tetsuya A1 - Herrmann, Ken A1 - Pelzer, Theo A1 - Higuchi, Takahiro T1 - Whitening and impaired glucose utilization of brown adipose tissue in a rat model of type 2 diabetes mellitus JF - Scientific Reports N2 - Brown adipose tissue (BAT) is an attractive therapeutic target to combat diabetes and obesity due to its ability to increase glucose expenditure. In a genetic rat model (ZDF fa/fa) of type-2 diabetes and obesity, we aimed to investigate glucose utilization of BAT by \(^{18}\)F-FDG PET imaging. Male Zucker diabetic fatty (ZDF) and Male Zucker lean (ZL) control rats were studied at 13 weeks. Three weeks prior to imaging, ZDF rats were randomized into a no-restriction (ZDF-ND) and a mild calorie restriction (ZDF-CR) group. Dynamic \(^{18}\)F-FDG PET using a dedicated small animal PET system was performed under hyperinsulinemic-euglycemic clamp. \(^{18}\)F-FDG PET identified intense inter-scapular BAT glucose uptake in all ZL control rats, while no focally increased \(^{18}\)F-FDG uptake was detected in all ZDF-ND rats. Mild but significant improved BAT tracer uptake was identified after calorie restriction in diabetic rats (ZDF-CR). The weight of BAT tissue and fat deposits were significantly increased in ZDF-CR and ZDF-ND rats as compared to ZL controls, while UCP-1 and mitochondrial concentrations were significantly decreased. Whitening and severely impaired insulin-stimulated glucose uptake in BAT was confirmed in a rat model of type-2 diabetes. Additionally, calorie restriction partially restored the impaired BAT glucose uptake. KW - molecular medicine KW - endocrinology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159066 VL - 7 ER - TY - JOUR A1 - Lapa, Constantin A1 - Kircher, Stefan A1 - Schirbel, Andreas A1 - Rosenwald, Andreas A1 - Kropf, Saskia A1 - Pelzer, Theo A1 - Walles, Thorsten A1 - Buck, Andreas K. A1 - Weber, Wolfgang A. A1 - Wester, Hans-Juergen A1 - Herrmann, Ken A1 - Lückerath, Katharina T1 - Targeting CXCR4 with [\(^{68}\)Ga]Pentixafor: a suitable theranostic approach in pleural mesothelioma? JF - Oncotarget N2 - C-X-C motif chemokine receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer. This study investigated the feasibility of CXCR4-directed imaging with positron emission tomography/computed tomography (PET/CT) using [\(^{68}\)Ga]Pentixafor in malignant pleural mesothelioma. Six patients with pleural mesothelioma underwent [\(^{68}\)Ga]Pentixafor-PET/CT. 2′-[\(^{18}\)F]fluoro-2′-deoxy-D-glucose ([\(^{18}\)F]FDG)-PET/CT (4/6 patients) and immunohistochemistry obtained from biopsy or surgery (all) served as standards of reference. Additionally, 9 surgical mesothelioma samples were available for histological work-up. Whereas [\(^{18}\)F]FDG-PET depicted active lesions in all patients, [\(^{68}\)Ga]Pentixafor-PET/CT recorded physiologic tracer distribution and none of the 6 patients presented [\(^{68}\)Ga]Pentixafor-positive lesions. This finding paralleled results of immunohistochemistry which also could not identify relevant CXCR4 surface expression in the samples analyzed. In contrast to past reports, our data suggest widely absence of CXCR4 expression in pleural mesothelioma. Hence, robust cell surface expression should be confirmed prior to targeting this chemokine receptor for diagnosis and/or therapy. KW - PET KW - CXCR4 KW - [\(^{68}\)Ga] pentixafor KW - pleural mesothelioma KW - theranostics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169989 VL - 8 IS - 57 ER -