TY - JOUR A1 - Lapa, Constantin A1 - Kircher, Malte A1 - Hänscheid, Heribert A1 - Schirbel, Andreas A1 - Grigoleit, Götz Ulrich A1 - Klinker, Erdwine A1 - Böck, Markus A1 - Samnick, Samuel A1 - Pelzer, Theo A1 - Buck, Andreas K T1 - Peptide receptor radionuclide therapy as a new tool in treatment-refractory sarcoidosis - initial experience in two patients JF - Theranostics N2 - Sarcoidosis is a multisystem granulomatous disorder of unknown etiology that can involve virtually all organ systems. Whereas most patients present without symptoms, progressive and disabling organ failure can occur in up to 10% of subjects. Somatostatin receptor (SSTR)-directed peptide receptor radionuclide therapy (PRRT) has recently received market authorization for treatment of SSTR-positive neuroendocrine tumors. Methods: We describe the first case series comprising two patients with refractory multi-organ involvement of sarcoidosis who received 4 cycles of PRRT. Results: PRRT was well-tolerated without any acute adverse effects. No relevant toxicities could be recorded during follow-up. Therapy resulted in partial response accompanied by a pronounced reduction in pain (patient #1) and stable disease regarding morphology as well as disease activity (patient #2), respectively. Conclusion: Peptide receptor radionuclide therapy in sarcoidosis is feasible and might be a new valuable tool in patients with otherwise treatment-refractory disease. Given the long experience with and good tolerability of PRRT, further evaluation of this new treatment option for otherwise treatment-refractory sarcoidosis in larger patient cohorts is warranted. KW - peptide receptor KW - PRRT KW - sarcoidosis KW - somatostatin receptors KW - radionuclide therapy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158983 VL - 8 IS - 3 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Eissler, Christoph A1 - Hayakawa, Nobuyuki A1 - Arias-Loza, Paula A1 - Wakabayashi, Hiroshi A1 - Javadi, Mehrbod S. A1 - Chen, Xinyu A1 - Shinaji, Tetsuya A1 - Lapa, Constantin A1 - Pelzer, Theo A1 - Higuchi, Takahiro T1 - Left Ventricular Diastolic Dysfunction in a Rat Model of Diabetic Cardiomyopathy using ECG-gated \(^{18}\)F-FDG PET JF - Scientific Reports N2 - In diabetic cardiomyopathy, left ventricular (LV) diastolic dysfunction is one of the earliest signs of cardiac involvement prior to the definitive development of heart failure (HF). We aimed to explore the LV diastolic function using electrocardiography (ECG)-gated \(^{18}\)F-fluorodeoxyglucose positron emission tomography (\(^{18}\)F-FDG PET) imaging beyond the assessment of cardiac glucose utilization in a diabetic rat model. ECG-gated \(^{18}\)F-FDG PET imaging was performed in a rat model of type 2 diabetes (ZDF fa/fa) and ZL control rats at age of 13 weeks (n=6, respectively). Under hyperinsulinemic-euglycemic clamp to enhance cardiac activity, \(^{18}\)F-FDG was administered and subsequently, list-mode imaging using a dedicated small animal PET system with ECG signal recording was performed. List-mode data were sorted and reconstructed into tomographic images of 16 frames per cardiac cycle. Left ventricular functional parameters (systolic: LV ejection fraction (EF), heart rate (HR) vs. diastolic: peak filling rate (PFR)) were obtained using an automatic ventricular edge detection software. No significant difference in systolic function could be obtained (ZL controls vs. ZDF rats: LVEF, 62.5±4.2 vs. 59.4±4.5%; HR: 331±35 vs. 309±24 bpm; n.s., respectively). On the contrary, ECG-gated PET imaging showed a mild but significant decrease of PFR in the diabetic rats (ZL controls vs. ZDF rats: 12.1±0.8 vs. 10.2±1 Enddiastolic Volume/sec, P<0.01). Investigating a diabetic rat model, ECG-gated \(^{18}\)F-FDG PET imaging detected LV diastolic dysfunction while systolic function was still preserved. This might open avenues for an early detection of HF onset in high-risk type 2 diabetes before cardiac symptoms become apparent. KW - diabetic cardiomyopathy KW - personalized treatment KW - precision medicine KW - ZDF rats KW - ECG KW - PET KW - \(^{18}\)F-fluorodeoxyglucose KW - \(^{18}\)F-FDG KW - diabetes Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171765 VL - 8 IS - 17631 ER -