TY - JOUR A1 - Held, Martina A1 - Berz, Annuska A1 - Hensgen, Ronja A1 - Muenz, Thomas S. A1 - Scholl, Christina A1 - Rössler, Wolfgang A1 - Homberg, Uwe A1 - Pfeiffer, Keram T1 - Microglomerular Synaptic Complexes in the Sky-Compass Network of the Honeybee Connect Parallel Pathways from the Anterior Optic Tubercle to the Central Complex JF - Frontiers in Behavioral Neuroscience N2 - While the ability of honeybees to navigate relying on sky-compass information has been investigated in a large number of behavioral studies, the underlying neuronal system has so far received less attention. The sky-compass pathway has recently been described from its input region, the dorsal rim area (DRA) of the compound eye, to the anterior optic tubercle (AOTU). The aim of this study is to reveal the connection from the AOTU to the central complex (CX). For this purpose, we investigated the anatomy of large microglomerular synaptic complexes in the medial and lateral bulbs (MBUs/LBUs) of the lateral complex (LX). The synaptic complexes are formed by tubercle-lateral accessory lobe neuron 1 (TuLAL1) neurons of the AOTU and GABAergic tangential neurons of the central body’s (CB) lower division (TL neurons). Both TuLAL1 and TL neurons strongly resemble neurons forming these complexes in other insect species. We further investigated the ultrastructure of these synaptic complexes using transmission electron microscopy. We found that single large presynaptic terminals of TuLAL1 neurons enclose many small profiles (SPs) of TL neurons. The synaptic connections between these neurons are established by two types of synapses: divergent dyads and divergent tetrads. Our data support the assumption that these complexes are a highly conserved feature in the insect brain and play an important role in reliable signal transmission within the sky-compass pathway. KW - sky-compass orientation KW - insect brain KW - polarization vision KW - synaptic connections KW - anterior optic tubercle KW - central complex KW - honeybee Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165080 VL - 10 IS - 186 ER - TY - JOUR A1 - Hensgen, Ronja A1 - England, Laura A1 - Homberg, Uwe A1 - Pfeiffer, Keram T1 - Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types JF - Journal of Comparative Neurology N2 - The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation. KW - RRID: AB_2337244 KW - RRID: AB_2315425 KW - central complex KW - insect brain KW - neuroanatomy KW - sky compass KW - Apis mellifera Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215566 VL - 529 ER - TY - JOUR A1 - Walter, Thomas A1 - Degen, Jacqueline A1 - Pfeiffer, Keram A1 - Stöckl, Anna A1 - Montenegro, Sergio A1 - Degen, Tobias T1 - A new innovative real-time tracking method for flying insects applicable under natural conditions JF - BMC Zoology N2 - Background Sixty percent of all species are insects, yet despite global efforts to monitor animal movement patterns, insects are continuously underrepresented. This striking difference between species richness and the number of species monitored is not due to a lack of interest but rather to the lack of technical solutions. Often the accuracy and speed of established tracking methods is not high enough to record behavior and react to it experimentally in real-time, which applies in particular to small flying animals. Results Our new method of real-time tracking relates to frequencies of solar radiation which are almost completely absorbed by traveling through the atmosphere. For tracking, photoluminescent tags with a peak emission (1400 nm), which lays in such a region of strong absorption through the atmosphere, were attached to the animals. The photoluminescent properties of passivated lead sulphide quantum dots were responsible for the emission of light by the tags and provide a superb signal-to noise ratio. We developed prototype markers with a weight of 12.5 mg and a diameter of 5 mm. Furthermore, we developed a short wave infrared detection system which can record and determine the position of an animal in a heterogeneous environment with a delay smaller than 10 ms. With this method we were able to track tagged bumblebees as well as hawk moths in a flight arena that was placed outside on a natural meadow. Conclusion Our new method eliminates the necessity of a constant or predictable environment for many experimental setups. Furthermore, we postulate that the developed matrix-detector mounted to a multicopter will enable tracking of small flying insects, over medium range distances (>1000m) in the near future because: a) the matrix-detector equipped with an 70 mm interchangeable lens weighs less than 380 g, b) it evaluates the position of an animal in real-time and c) it can directly control and communicate with electronic devices. KW - natural environment KW - insect tracking KW - real-time KW - movement ecology KW - heterogeneous background Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265716 VL - 6 ER - TY - JOUR A1 - Nguyen, Tu Anh Thi A1 - Beetz, M. Jerome A1 - Merlin, Christine A1 - Pfeiffer, Keram A1 - el Jundi, Basil T1 - Weighting of celestial and terrestrial cues in the monarch butterfly central complex JF - Frontiers in Neural Circuits N2 - Monarch butterflies rely on external cues for orientation during their annual long-distance migration from Northern US and Canada to Central Mexico. These external cues can be celestial cues, such as the sun or polarized light, which are processed in a brain region termed the central complex (CX). Previous research typically focused on how individual simulated celestial cues are encoded in the butterfly's CX. However, in nature, the butterflies perceive several celestial cues at the same time and need to integrate them to effectively use the compound of all cues for orientation. In addition, a recent behavioral study revealed that monarch butterflies can rely on terrestrial cues, such as the panoramic skyline, for orientation and use them in combination with the sun to maintain a directed flight course. How the CX encodes a combination of celestial and terrestrial cues and how they are weighted in the butterfly's CX is still unknown. Here, we examined how input neurons of the CX, termed TL neurons, combine celestial and terrestrial information. While recording intracellularly from the neurons, we presented a sun stimulus and polarized light to the butterflies as well as a simulated sun and a panoramic scene simultaneously. Our results show that celestial cues are integrated linearly in these cells, while the combination of the sun and a panoramic skyline did not always follow a linear integration of action potential rates. Interestingly, while the sun and polarized light were invariantly weighted between individual neurons, the sun stimulus and panoramic skyline were dynamically weighted when both stimuli were simultaneously presented. Taken together, this dynamic weighting between celestial and terrestrial cues may allow the butterflies to flexibly set their cue preference during navigation. KW - insect KW - central complex KW - navigation KW - orientation KW - landmark KW - migration KW - panorama KW - lepidoptera Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-279445 SN - 1662-5110 VL - 16 ER - TY - JOUR A1 - Rother, Lisa A1 - Kraft, Nadine A1 - Smith, Dylan B. A1 - El Jundi, Basil A1 - Gill, Richard J. A1 - Pfeiffer, Keram T1 - A micro-CT-based standard brain atlas of the bumblebee JF - Cell and Tissue Research N2 - In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy. KW - neuropils KW - Bombus terrestris KW - insect standard brain atlas KW - iterative shape averaging KW - reconstruction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267783 SN - 1432-0878 VL - 386 IS - 1 ER -