TY - JOUR A1 - Hagg, Wilfried A1 - Mayr, Elisabeth A1 - Mannig, Birgit A1 - Reyers, Mark A1 - Schubert, David A1 - Pinto, Joaquim G. A1 - Peters, Juliane A1 - Pieczonka, Tino A1 - Juen, Martin A1 - Bolch, Tobias A1 - Paeth, Heiko A1 - Mayer, Christoph T1 - Future climate change and its impact on runoff generation from the debris-covered Inylchek glaciers, Central Tian Shan, Kyrgyzstan JF - Water N2 - The heavily debris-covered Inylchek glaciers in the central Tian Shan are the largest glacier system in the Tarim catchment. It is assumed that almost 50% of the discharge of Tarim River are provided by glaciers. For this reason, climatic changes, and thus changes in glacier mass balance and glacier discharge are of high impact for the whole region. In this study, a conceptual hydrological model able to incorporate discharge from debris-covered glacier areas is presented. To simulate glacier melt and subsequent runoff in the past (1970/1971–1999/2000) and future (2070/2071–2099/2100), meteorological input data were generated based on ECHAM5/MPI-OM1 global climate model projections. The hydrological model HBV-LMU was calibrated by an automatic calibration algorithm using runoff and snow cover information as objective functions. Manual fine-tuning was performed to avoid unrealistic results for glacier mass balance. The simulations show that annual runoff sums will increase significantly under future climate conditions. A sensitivity analysis revealed that total runoff does not decrease until the glacier area is reduced by 43%. Ice melt is the major runoff source in the recent past, and its contribution will even increase in the coming decades. Seasonal changes reveal a trend towards enhanced melt in spring, but a change from a glacial-nival to a nival-pluvial runoff regime will not be reached until the end of this century. KW - glaciers KW - debris-covered glaciers KW - hydrological modelling KW - climate scenarios KW - Tian Shan Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197592 SN - 2073-4441 VL - 10 IS - 11 ER -