TY - JOUR A1 - Pozzi, Nicoló G. A1 - Palmisano, Chiara A1 - Reich, Martin M. A1 - Capetian, Philip A1 - Pacchetti, Claudio A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Troubleshooting gait disturbances in Parkinson’s disease with deep brain stimulation JF - Frontiers in Human Neuroscience N2 - Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson’s disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management. KW - Parkinson’s disease KW - freezing of gait (FOG) KW - deep brain stimulation (DBS) KW - subthalamic nucleus (STN) KW - globus pallidus pars interna (GPi) KW - pedunculopontine nucleus (PPN) Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-274007 SN - 1662-5161 VL - 16 ER - TY - JOUR A1 - Canessa, Andrea A1 - Pozzi, Nicolò G. A1 - Arnulfo, Gabriele A1 - Brumberg, Joachim A1 - Reich, Martin M. A1 - Pezzoli, Gianni A1 - Ghilardi, Maria F. A1 - Matthies, Cordula A1 - Steigerwald, Frank A1 - Volkmann, Jens A1 - Isaias, Ioannis U. T1 - Striatal Dopaminergic Innervation Regulates Subthalamic Beta-Oscillations and Cortical-Subcortical Coupling during Movements: Preliminary Evidence in Subjects with Parkinson's Disease JF - Frontiers in Human Neuroscience N2 - Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remains unclear. We recorded local field potential (LFP) activity from the subthalamic nucleus (STN) and high-density electroencephalography (EEG) signals in four patients with Parkinson’s disease (PD) off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation (DBS) device at 4 months after surgery. Three patients also performed a single-photon computed tomography (SPECT) with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (FP-CIT) to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization (ERD) followed by a rebound after movement termination event-related synchronization (ERS) of oscillatory beta activity in the STN and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement. KW - beta oscillations KW - Parkinson’s disease KW - motor control KW - movement disorders KW - imaging KW - subthalamic nucleus KW - coherence analysis Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164061 VL - 10 IS - 611 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Brandt, Gregor A1 - Vissani, Matteo A1 - Pozzi, Nicoló G. A1 - Canessa, Andrea A1 - Brumberg, Joachim A1 - Marotta, Giorgio A1 - Volkmann, Jens A1 - Mazzoni, Alberto A1 - Pezzoli, Gianni A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition JF - Frontiers in Bioengineering and Biotechnology N2 - Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment. KW - gait initiation KW - Parkinson’s disease KW - basal ganglia KW - dopamine KW - base of support KW - anthropometric measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200801 SN - 2296-4185 VL - 8 ER - TY - JOUR A1 - Kremer, Naomi I. A1 - Pauwels, Rik W. J. A1 - Pozzi, Nicolò G. A1 - Lange, Florian A1 - Roothans, Jonas A1 - Volkmann, Jens A1 - Reich, Martin M. T1 - Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions JF - Journal of Clinical Medicine N2 - Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated. KW - deep brain stimulation KW - tremor KW - essential tremor KW - Parkinson’s disease KW - outcomes KW - clinical approach KW - target considerations KW - future directions Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-244982 SN - 2077-0383 VL - 10 IS - 16 ER - TY - JOUR A1 - Isaias, Ioannis U. A1 - Brumberg, Joachim A1 - Pozzi, Nicoló G. A1 - Palmisano, Chiara A1 - Canessa, Andrea A1 - Marotta, Giogio A1 - Volkmann, Jens A1 - Pezzoli, Gianni T1 - Brain metabolic alterations herald falls in patients with Parkinson's disease JF - Annals of Clinical and Translational Neurology N2 - Pathophysiological understanding of gait and balance disorders in Parkinson’s disease is insufficient and late recognition of fall risk limits efficacious followup to prevent or delay falls. We show a distinctive reduction of glucose metabolism in the left posterior parietal cortex, with increased metabolic activity in the cerebellum, in parkinsonian patients 6–8 months before their first fall episode. Falls in Parkinson’s disease may arise from altered cortical processing of body spatial orientation, possibly predicted by abnormal cortical metabolism. KW - Parkionson's disease KW - brain metabolic alterations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235982 VL - 7 IS - 4 ER -