TY - JOUR A1 - Nordbeck, Peter A1 - Beer, Meinrad A1 - Köstler, Herbert A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Bauer, Wolfgang R. A1 - Ritter, Oliver T1 - Cardiac catheter ablation under real-time magnetic resonance guidance JF - European Heart Journal N2 - One of the main shortcomings of interventional electrophysiology (EP) is its inability to generate sufficient soft tissue contrast for intra-procedural visualization of the myocardium and the surrounding tissue, using conventional imaging techniques. Interventional cardiovascular magnetic resonance imaging (MRI) aims at bringing about significant improvements to the complex and decisive EP interventions far beyond the capabilities of currently available supportive imaging techniques used to surmount the drawbacks of fluoroscopy, as MRI not only allows of precise three-dimensional exposure of the cardiovascular morphology, but also proves to be a promising technique exclusively suitable for direct visualization of arrhythmogenic substrate and therapeutic effects. The major challenge posed by clinical … KW - magnetic resonance Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125638 VL - 33 IS - 15 ER - TY - JOUR A1 - Reiter, Theresa A1 - Gensler, Daniel A1 - Ritter, Oliver A1 - Weiss, Ingo A1 - Geistert, Wolfgang A1 - Kaufmann, Ralf A1 - Hoffmeister, Sabine A1 - Friedrich, Michael T. A1 - Wintzheimer, Stefan A1 - Düring, Markus A1 - Nordbeck, Peter A1 - Jakob, Peter M. A1 - Ladd, Mark E. A1 - Quick, Harald H. A1 - Bauer, Wolfgang R. T1 - Direct cooling of the catheter tip increases safety for CMR-guided electrophysiological procedures JF - Journal of Cardiovascular Magnetic Resonance N2 - Background: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. Methods: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. Results: A maximum temperature rise of 22.4 degrees C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2 degrees C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8 degrees C. Conclusion: Up to a maximum of 22.4 degrees C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner. KW - EP Procedures KW - radiofrequency ablation KW - contact force KW - lesion size KW - MRI KW - temperature KW - tissue KW - wires KW - model KW - ablation KW - safety KW - catheter tip KW - MR guidance Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-134927 VL - 14 IS - 12 ER - TY - JOUR A1 - Chaudry, Oliver A1 - Grimm, Alexandra A1 - Friedberger, Andreas A1 - Kemmler, Wolfgang A1 - Uder, Michael A1 - Jakob, Franz A1 - Quick, Harald H. A1 - von Stengel, Simon A1 - Engelke, Klaus T1 - Magnetic Resonance Imaging and Bioelectrical Impedance Analysis to Assess Visceral and Abdominal Adipose Tissue JF - Obesity N2 - Objective This study aimed to compare a state‐of‐the‐art bioelectrical impedance analysis (BIA) device with two‐point Dixon magnetic resonance imaging (MRI) for the quantification of visceral adipose tissue (VAT) as a health‐related risk factor. Methods A total of 63 male participants were measured using a 3‐T MRI scanner and a segmental, multifrequency BIA device. MRI generated fat fraction (FF) maps, in which VAT volume, total abdominal adipose tissue volume, and FF of visceral and total abdominal compartments were quantified. BIA estimated body fat mass and VAT area. Results Coefficients of determination between abdominal (r\(^{2}\) = 0.75) and visceral compartments (r\(^{2}\) = 0.78) were similar for both groups, but slopes differed by a factor of two. The ratio of visceral to total abdominal FF was increased in older men compared with younger men. This difference was not detected with BIA. MRI and BIA measurements of the total abdominal volume correlated moderately (r\(^{2}\) = 0.31‐0.56), and visceral measurements correlated poorly (r\(^{2}\) = 0.13‐0.44). Conclusions Visceral BIA measurements agreed better with MRI measurements of the total abdomen than of the visceral compartment, indicating that BIA visceral fat area assessment cannot differentiate adipose tissue between visceral and abdominal compartments in young and older participants. Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-213591 VL - 28 IS - 2 SP - 277 EP - 283 ER -