TY - JOUR A1 - Simon, Micha A1 - Ipek, Rojda A1 - Homola, György A. A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis JF - Journal of Neuroinflammation N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. KW - Alemtuzumab KW - B cells KW - CD52 KW - CNS KW - EAE KW - MS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176120 VL - 15 IS - 225 ER - TY - THES A1 - Schampel, Andrea T1 - Beneficial therapeutic effects of the L-type calcium channel antagonist nimodipine in experimental autoimmune encephalomyelitis – an animal model for multiple sclerosis T1 - Günstige therapeutische Effekte des L-Typ-Calciumkanal-Antagonisten Nimodipin in der experimentellen autoimmunen Enzephalomyelitis ̶ einem Tiermodell der Multiplen Sklerose N2 - Multiple sclerosis (MS) is the most prevalent neurological disease of the central nervous system (CNS) in young adults and is characterized by inflammation, demyelination and axonal pathology that result in multiple neurological and cognitive deficits. The focus of MS research remains on modulating the immune response, but common therapeutic strategies are only effective in slowing down disease progression and attenuating the symptoms; they cannot cure the disease. Developing an option to prevent neurodegeneration early on would be a valuable addition to the current standard of care for MS. Based on our results we suggest that application of nimodipine could be an effective way to target both neuroinflammation and neurodegeneration. We performed detailed analyses of neurodegeneration in experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and in in vitro experiments regarding the effect of the clinically well-established L-type calcium channel antagonist nimodipine. Nimodipine treatment attenuated the course of EAE and spinal cord histopathology. Furthermore, it promoted remyelination. The latter could be due to the protective effect on oligodendrocytes and oligodendrocyte precursor cells (OPCs) we observed in response to nimodipine treatment. To our surprise, we detected calcium channel-independent effects on microglia, resulting in apoptosis. These effects were cell type-specific and independent of microglia polarization. Apoptosis was accompanied by decreased levels of nitric oxide (NO) and inducible NO synthase (iNOS) in cell culture as well as decreased iNOS expression and reactive oxygen species (ROS) activity in EAE. Overall, application of nimodipine seems to generate a favorable environment for regenerative processes and could therefore be a novel treatment option for MS, combining immunomodulatory effects while promoting neuroregeneration. N2 - Multiple Sklerose (MS) ist die häufigste neurologische Erkrankung des zentralen Nervensystems (ZNS) von jungen Erwachsenen und charakterisiert durch Inflammation, Demyelinisierung und axonale Pathologie. Diese Prozesse bewirken zahlreiche neurologische und kognitive Defizite. Der Schwerpunkt in der MS-Forschung besteht derzeit vor allem in der Modulation der Immunantwort, jedoch sind herkömmliche Therapiestrategien bislang nur in der Lage die Progression der Erkrankung zu verlangsamen und die Symptome zu lindern, die Krankheit kann jedoch immer noch nicht geheilt werden. Die Möglichkeit, den Prozess der Neurodegeneration früh aufzuhalten, würde eine wertvolle Ergänzung zu herkömmlichen Therapien darstellen. Basierend auf den Ergebnissen dieser Studie schlagen wir vor, dass die Applikation von Nimodipin eine elegante Möglichkeit wäre, um sowohl die Neuroinflammation als auch die -degeneration zu bekämpfen. Um den Effekt des klinisch gut etablierten Calciumkanal-Antagonisten Nimodipin zu untersuchen, haben wir detaillierte Analysen der Degeneration in der experimentellen autoimmunen Enzephalomyelitis (EAE), einem Tiermodell der MS, und in in vitro Untersuchungen durchgeführt. Applikation von Nimodipin verringerte das klinische Erscheinungsbild der EAE sowie die Histopathologie des Rückenmarkes. Außerdem förderte es die Regeneration. Die Ursache für letzteres liegt vermutlich am protektiven Effekt der Behandlung mit Nimodipin auf die Oligodendrozyten und deren Vorläuferzellen. Überraschenderweise, konnten wir Calciumkanal-unspezifische Effekte auf Mikroglia feststellen, die in Apoptose resultierten und sowohl Zelltyp-spezifisch als auch unabhängig von der Polarisierung der Mikrogliazellen waren. Apoptose wurde begleitet von reduzierten Spiegeln an Stickstoffmonoxid (NO) und der induzierbaren NO Synthase (iNOS) in Zellkultur, sowie einer reduzierten Expression von iNOS und dem geringeren Vorkommen von reaktiven oxygenen Spezies (ROS) in der EAE. Zusammenfassend gehen wir davon aus, dass die Applikation von Nimodipin eine günstige Umgebung für regenerative Prozesse schafft. Daher stellt die Applikation dieser Substanz eine neue Behandlungsmöglichkeit für die MS dar, insbesondere da sie Möglichkeiten der Immunmodulation mit der Förderung von Neuroregeneration verbindet. KW - Nimodipin KW - Multiple Sklerose KW - l-type calcium channel antagonist KW - experimental autoimmune encephalomyelitis KW - L-typ Calciumkanal Antagonist KW - experimentelle autoimmune Enzephalomyelitis KW - neuroprotection KW - multiple sclerosis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148952 ER - TY - JOUR A1 - Schampel, Andrea A1 - Kuerten, Stefanie T1 - Danger: high voltage - the role of voltage-gated calcium channels in central nervous system pathology JF - Cells N2 - Voltage-gated calcium channels (VGCCs) are widely distributed within the central nervous system (CNS) and presumed to play an important role in the pathophysiology of a broad spectrum of CNS disorders including Alzheimer’s and Parkinson’s disease as well as multiple sclerosis. Several calcium channel blockers have been in clinical practice for many years so that their toxicity and side effects are well studied. However, these drugs are primarily used for the treatment of cardiovascular diseases and most if not all effects on brain functions are secondary to peripheral effects on blood pressure and circulation. While the use of calcium channel antagonists for the treatment of CNS diseases therefore still heavily depends on the development of novel strategies to specifically target different channels and channel subunits, this review is meant to provide an impulse to further emphasize the importance of future research towards this goal. KW - cells KW - calcium KW - calcium channel antagonists KW - CNS KW - EAE KW - neurodegeneration KW - MS KW - regeneration KW - remyelination Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172653 VL - 6 IS - 4 ER - TY - JOUR A1 - Bail, Kathrin A1 - Notz, Quirin A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Wunsch, Marie A1 - Koeniger, Tobias A1 - Schropp, Verena A1 - Bharti, Richa A1 - Scholz, Claus-Juergen A1 - Foerstner, Konrad U. A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Differential effects of FTY720 on the B cell compartment in a mouse model of multiple sclerosis. JF - Journal of Neuroinflammation N2 - Background: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). Methods: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P\(_{1}\) receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. Results: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220\(^{+}\) B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. Conclusions: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE. KW - B cells KW - EAE KW - FTY720 KW - fingolimod KW - multiple sclerosis KW - TLO Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157869 VL - 14 IS - 148 ER -