TY - JOUR A1 - Franke, Werner W. A1 - Scheer, Ulrich A1 - Trendelenburg, Michael F. A1 - Spring, Herbert A1 - Zentgraf, Hanswalter T1 - Absence of nucleosomes in transcriptionally active chromatin N2 - The ultrastructure of twO kinds of transcription ally active chromatin, the lampbrush chromosome loops and the nucleoli from amphibian oocytes and primary nuclei of the green alga Acetabularia, has been examined after manual isolation and dispersion in low salt media of slightly alkaline pH using various electron microscopic staining techniques (positive staining, metal shadowing, negative staining, preparation on positively charged films, etc.) and compared with the appearance of chromatin from various somatic cells (hen erythrocytes, rat hepatocytes, ClIltured murine sarcoma cells) prepared in parallel. While typical nucleosomes were revealed with all the techniques for chromatin from the latter three cell system, no nucleosomes were identified in either the lampbrush chromosome structures or the nucleolar chromatin. Nucleosomal arrays were absent not only in maximally fibril-covered matrix units but also in fibril-free regions between transcriptional complexes, including the apparent spacer intercepts between different transcriptional units. Moreover, comparisons of the length of the repeating units of rDNA in the transcribed state with those determined in the isolated rDNA and with the lengths of the first stable product of rDNA transcription, the pre-rRNA, demonstrated that the transcribed rDNA was not significantly shortened and/or condensed but rather extended in the transcriptional units. Distinct granules of about nucleosomal size which were sometimes found in apparent spacer regions as well as within matrix units of reduced fibril density were shown not to represent nucleosomes since their number per spacer unit was not inversely correlated with the length of the specific unit and also on the basis of their resistance to treatment with the detergent Sarkosyl NL-30. It is possible to structurally distinguish between transcriptionally active chromatin in which the DNA is extended in a non-nucleosomal form of chromatin and condensed, inactive chromatin within the typical nucleosomal package. The characteristic extended structure of transcriptionally active chromatin is found not only in the transcribed genes but also in non-transcribed regions within or between ("spacer") transcriptional units as well as in transcriptional units that are untranscribed amidst transcribed ones and/or have been inactivated for relatively short time. It is hypothesized that activation of transcription involves a transition from a nucleosomal to an extended chromatin organisation and that this structural transition is not specific for single "activated" genes but may involve larger chromatin regions, including adjacent untranscribed intercepts. KW - Cytologie KW - Chromatin structure KW - nucleosomes KW - transcription KW - electron microscopy Y1 - 1976 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40646 ER - TY - CHAP A1 - Scheer, Ulrich A1 - Franke, Werner W. T1 - Transcriptional complexes of nucleolar genes N2 - No abstract available Y1 - 1976 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41072 ER - TY - JOUR A1 - Scheer, Ulrich A1 - Messner, Karin A1 - Hazan, Rachel A1 - Raska, Ivan A1 - Hansmann, Paul A1 - Falk, Heinz A1 - Spiess, Eberhard A1 - Franke, Werner W. T1 - High sensitivity immunolocalization of double and single-stranded DNA by a monoclonal antibody N2 - A monoclonal antibody (AK 30-10) is described which specifically reacts with DNA both in double and single-stranded forms but not with other molecules and structures, including deoxyribonucleotides and RNAs. When used in immunocytochemical experiments on tissue sections and permeabilized cultured cells, this antibody detects DNA-containing structures, even when the DNA is present in very small amounts. Examples of high resolution detection include the DNA present in amplified extrachromosomal nucleoli, chromomeres of lampbrush chromosomes, mitochondria, chloroplasts and mycoplasmal particles. In immunoelectron microscopy using the immunogold technique, the DNA was localized in distinct substructures such as the "fibrillar centers" of nucleoli and certain stromal centers in chloroplasts. The antibody also reacts with DNA of chromatin of living cells, as shown by microinjection into cultured mitotic cells and into nuclei of amphibian oocytes. The potential value and the limitations of immunocytochemical DNA detection are discussed. KW - Cytologie KW - DNA antibodies KW - monoclonal antibodies KW - DNA immunolocalization KW - chromatin KW - mycoplasma tests Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41063 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Structural organization of spacer chromatin between transcribed ribosomal RNA genes in amphibian oocytes N2 - Transcribed nucleolar chomatin, including the spacer regions interspersed between the rRNA genes, is different from the bulk of nontranscribed chromatin in that the DNA of these regions appears to be in an extended (B) conformation when examined by electron microscopy. The possibility that this may reflect artificial unfolding of nucleosomes during incubation in very low salt buffers as routinely used in such spread preparations has been examined by studying the influence of various ion concentrations on nucleolar chromatin structure. Amplified nucleolar chromatin of amphibian oocytes (Xenopus laevis, Pleurodeles waltlii, Triturus cristatus) was spread in various concentrations of NaCl (range 0 to 20 mM). Below 1 mM salt spacer chromatin frequently revealed a variable number of irregularly shaped beads, whereas above this concentration the chromatin axis appeared uniformly smooth. At all salt concentrations studied, however, the length distribution of spacer and gene regions was identical. Preparations fixed with glutaraldehyde instead of formaldehyde, or unftxed preparations, were indistinguishable in this respect. The observations indicate that (i) rDNA spacer regions are not compacted into nucleosomal particles and into supranucleosomal structures when visualized at chromatin stabilizing salt concentrations (e.g., 20 mM NaCl), and (ii) spacer DNA is covered by a uniform layer of proteins of unknown nature which, at very low salt concentrations (below 1 mM NaCl), can artificially give rise to the appearance of small granular particles of approximately nucleosome-like sizes. These particles, however, are different from nucleosomes in that they do not foreshorten the associated spacer DNA. The data support the concept of an altered nucleohistone conformation not only in transcribed chromatin but also in the vicinity of transcriptional events. KW - Cytologie KW - Chromatin structure KW - rDNA KW - amphibian oocytes Y1 - 1980 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41057 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Entwicklung der Gametogonien in ektopisch transplantierten Gonaden bei Triturus N2 - Nach homoplastischer Transplantation von larvalen Gonaden mit Fettkiirper in die vordere Leibeshiihle wiichst nur der Fettkiirper an der Leber an, so daB die Gonade nur indirekt mit dem Wirtsgewebe verbunden ist. Die Differenzierung der Gametogonien folgt der Normogenese, bei Ovartransplantationen entwickeln sich Auxocyten. Nach spatestens 27 Tagen ist die Blutversorgung wiederhergestellt. Homo- und autoplastische Transplantationen von Gonaden oh ne Fettkiirper ergeben fUr die Gametogonien eine vollig andere Entwicklung. Sind die Gonaden mit breiter Fliiche angewachsen, liiBt si ch bereits 7 Tage p.o. im Bereich der Kontaktzone Gonade-Leber die Karyolyse der Gametogonienkerne feststellen. Nach 3--4 Wochen stellt das Transplantat eine bindegewebige Zyste ohne Geschlechtszellen dar. Erythrozyten zeigen die Vaskularisation an. 1st nur ein Teil der Gonade mit der Leber verwachsen, zeigt der frei gebliebene Abschnitt eine normale Struktur mit Mitosen der Gametogonien. Die Degeneration der Geschlechtszellen hiingt offenbar von ihrer Lage zum extragonadalen Gewebe ab. N2 - Homografts of gonads including fat· bodies show fusion of the fat-body with liver tissue. Thus, contact between gonad and liver is only indirect. The differentiation of the gametogonia follows the normal way of development. In case of ovary homografts auxocytes appear. Not later than 27 days after transplantation vascularization is reestablished. Homo- and autografts of gonads without fat-body show a quite different development of the gametogonia. When the gonads are broadly fused with liver tissue one notices karyolysis of the gametogonia nuclei within the gonad liver contact region already 7 days after transplantation. After 3- 4 weeks the graft represents a cyst formed by connective tissue without any germ cells. Erythrocytes indicate vascularization. In the gonad partly fused with liver normal structure and mitosis in the gametogonia appear in that part of the transplant not attached to liver tissue. The present experiments suggest that the degeneration of germ cells is depending on their position to extragonadal tissue. Y1 - 1969 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40510 ER - TY - CHAP A1 - Scheer, Ulrich A1 - Dabauvalle, Marie-Christine T1 - Functional organization of the amphibian oocyte nucleus N2 - No abstract available KW - Oogenese Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41178 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Injection of antibodies into the nucleus of amphibian oocytes: an experimental means of interfering with gene expression in the living cell N2 - No abstract available Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41182 ER - TY - JOUR A1 - Dabauvalle, Marie-Christine A1 - Scheer, Ulrich T1 - Assembly of nuclear pore complexes in Xenopus egg extract N2 - No abstract available Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41194 ER - TY - JOUR A1 - Hock, Robert A1 - Moormann, Antoon A1 - Fischer, Dagmar A1 - Scheer, Ulrich T1 - Absence of somatic histone H1 in oocytes and preblastula embryos of Xenopus laevis N2 - Available data on the occurrence and expression of somatic histone HI during oogenesis and early embryogenesis of Xenopus laevis are contradictory. In particular the reported presence of a large storage pool of histone HIA in oocytes is difficult to reconcile with the high transcriptional activity of all gene classes in this specific cell type. In the present study we have used polyclonal antibodies raised against somatic Xenopus histone HI (HIA and HIA/B) for combined immunoblotting experiments to quantitate HI pools and immunolocalization studies to visualize chromosome- bound HI. Both approaches failed to detect soluble or chromosomal histone HI in vitellogenic oocytes, eggs, and cleavage-stage embryos up to early blastula. In addition, chromatin assembled in Xenopus egg extract was also negative for histone HI as revealed by immunofluorescence microscopy. Lampbrush chromosomes not only lacked histone HI but also the previously identified histone HI-like B4 protein (Smith et al., 1988, Genes Dev. 2,1284-1295). In contrast, chromosomes of eggs and early embryos fluoresced brightly with anti-B4 antibodies. Our results lend further support to the view that histone HI expression is developmentally regulated during Xenopus oogenesis and embryogenesis similar to what is known from other species. Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41350 ER - TY - JOUR A1 - Kleinschmidt, Jürgen A. A1 - Scheer, Ulrich A1 - Dabauvalle, Marie-Christine A1 - Bustin, Michael A1 - Franke, Werner W. T1 - High mobility group proteins of amphibian oocytes: a large storage pool of a soluble high mobility group-1-like protein and involvement in transcriptional events N2 - No abstract available Y1 - 1983 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-33250 ER - TY - JOUR A1 - Thiry, Marc A1 - Scheer, Ulrich A1 - Goessens, Guy T1 - Localization of nucleolar chromatin by immunocytochemistry and in situ hybridization at the electron microscopic level N2 - Nucleoli are the morphological expression of the activity of a defined set of chromosomal segments bearing rRNA genes. The topological distribution and composition of the intranucleolar chromatin as well as the definition of nucleolar structures in which enzymes of the rDNA transcription machinery reside have been investigated in mammalian cells by various immunogold labelling approaches at the ultrastructural level. The precise intranucleolar location of rRNA genes has been further specified by electron microscopic in situ hybridization with a non-autoradiographic procedure. Our results indicate that the fibrillar centers are the sole nucleolar structures where rDNA, core histones, RNA polymerase I and DNA to po isomerase I are located together. Taking into account the potential value and limitations of immunoelectron microscopic techniques, we propose that transcription of the rRNA genes takes place within the confines of the fibrillar centers, probably close to the boundary regions to the surrounding dense fibrillar component. Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39289 ER - TY - CHAP A1 - Franke, Werner W. A1 - Scheer, Ulrich A1 - Trendelenburg, Michael F. A1 - Zentgraf, H. A1 - Spring, H. T1 - Morphology of transcriptionally active chromatin N2 - Some decades ago it was noted by cytologists that within the interphase nucleus large portions of the transcriptionally ("genetically," in their terms) inactive chromosomal material are contained in aggregates of condensed chromatin, the "chromocenters," whereas transcriptionally active regions of chromosomes appear in a more dispersed form and are less intensely stained with DNA-directed staining procedures (Heitz 1929, 1932, 1956; Bauer 1933). The hypothesis that condensed chromatin is usually characterized by very low or no transcriptional activity, and that transcription occurs in loosely packed forms of chromatin (including, in most cells, the nucleolar chromatin) has received support from studies of ultrathin sections in the electron microscope and from the numerous attempts to separate transcriptionally active from inactive chromatin biochemically (for references, see Anderson et al. 1975; Berkowitz and Doty 1975; Krieg and Wells 1976; Rickwood and Birnie 1976; Gottesfeld 1977). Electron microscopic autoradiography has revealed that sites of RNA synthesis are enriched in dispersed chromatin regions located at the margins of condensed chromatin (Fakan and Bernhard 1971, 1973; Bouteille et al. 1974; Bachellerie et al. 1975) and are characterized by the occurrence of distinct granular and fibrillar ribonucleoprotein (RNP) structures, such as perichromatin granules and fibrils. The discovery that, in most eukaryotic nuclei, major parts of the chromatin are organized in the form of nucleosomes (Olins and Olins 1974; Kornberg 1974; Baldwin et al. 1975) has raised the question whether the same nucleosomal packing of DNA is also present in transcriptionally active chromatin strands. Recent detailed examination of the morphology of active and inactive chromatin involving a diversity of electron microscopic methods, particularly the spreading technique by Miller and coworkers (Miller and Beatty 1969; Miller and Bakken 1972), has indicated that the DNA of some actively transcribed regions is not packed into nucleosomal particles but is present in a rather extended form within a relatively thin (4-7 nm) chromatin fiber. Y1 - 1978 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-41097 ER - TY - JOUR A1 - Scheer, Ulrich T1 - Boveri's research at the Zoological Station Naples: Rediscovery of his original microscope slides at the University of Würzburg JF - Marine Genomics N2 - Eric Davidson once wrote about Theodor Boveri: "From his own researches, and perhaps most important, his generalized interpretations, derive the paradigms that underlie modern inquiries into the genomic basis of embryogenesis" (Davidson, 1985). As luck would have it, the "primary data" of Boveri's experimental work, namely the microscope slides prepared by him and his wife Marcella during several stays at the Zoological Station in Naples (1901/02, 1911/12 and 1914), have survived at the University of Wurzburg. More than 600 slides exist and despite their age they are in a surprisingly good condition. The slides are labelled and dated in Boveri's handwriting and thus can be assigned to his published experimental work on sea urchin development. The results allowed Boveri to unravel the role of the cell nucleus and its chromosomes in development and inheritance. Here, I present an overview of the slides in the context of Boveri's work along with photographic images of selected specimens taken from the original slides. It is planned to examine the slides in more detail, take high-resolution focal image series of significant specimens and make them online available. KW - Sea urchin development KW - Polyspermy KW - Multipolar mitosis KW - Aneuploidy KW - Merogone experiments KW - Science history Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228453 VL - 40 ER -