TY - JOUR A1 - Schilcher, Felix A1 - Hilsmann, Lioba A1 - Rauscher, Lisa A1 - Değirmenci, Laura A1 - Krischke, Markus A1 - Krischke, Beate A1 - Ankenbrand, Markus A1 - Rutschmann, Benjamin A1 - Mueller, Martin J. A1 - Steffan-Dewenter, Ingolf A1 - Scheiner, Ricarda T1 - In vitro rearing changes social task performance and physiology in honeybees JF - Insects N2 - In vitro rearing of honeybee larvae is an established method that enables exact control and monitoring of developmental factors and allows controlled application of pesticides or pathogens. However, only a few studies have investigated how the rearing method itself affects the behavior of the resulting adult honeybees. We raised honeybees in vitro according to a standardized protocol: marking the emerging honeybees individually and inserting them into established colonies. Subsequently, we investigated the behavioral performance of nurse bees and foragers and quantified the physiological factors underlying the social organization. Adult honeybees raised in vitro differed from naturally reared honeybees in their probability of performing social tasks. Further, in vitro-reared bees foraged for a shorter duration in their life and performed fewer foraging trips. Nursing behavior appeared to be unaffected by rearing condition. Weight was also unaffected by rearing condition. Interestingly, juvenile hormone titers, which normally increase strongly around the time when a honeybee becomes a forager, were significantly lower in three- and four-week-old in vitro bees. The effects of the rearing environment on individual sucrose responsiveness and lipid levels were rather minor. These data suggest that larval rearing conditions can affect the task performance and physiology of adult bees despite equal weight, pointing to an important role of the colony environment for these factors. Our observations of behavior and metabolic pathways offer important novel insight into how the rearing environment affects adult honeybees. KW - honeybee KW - artificial rearing KW - behavior KW - in vitro KW - juvenile hormone KW - triglycerides KW - PER KW - foraging KW - nursing Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252305 SN - 2075-4450 VL - 13 IS - 1 ER - TY - JOUR A1 - Schilcher, Felix A1 - Thamm, Markus A1 - Strube-Bloss, Martin A1 - Scheiner, Ricarda T1 - Opposing actions of octopamine and tyramine on honeybee vision JF - Biomolecules N2 - The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light. KW - biogenic amines KW - neurotransmitter KW - phototaxis KW - ERG KW - behaviour KW - modulation KW - visual system KW - octopamine KW - tyramine KW - Apis mellifera Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-246214 SN - 2218-273X VL - 11 IS - 9 ER - TY - JOUR A1 - Schuhmann, Antonia A1 - Scheiner, Ricarda T1 - A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees JF - Ecotoxicology and Environmental Safety N2 - The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive. Highlights • Mix of SBI fungicides and neonicotinoids can lead to synergistic effects for bees. • Combination of non-SBI fungicide and neonicotinoid in field-realistic doses tested. • Synergistic effect on mortality of honeybees. • No effects on sucrose responsiveness and learning performance of honeybees. • Synergistic effects by other pesticide mixtures or on wild bees cannot be excluded. KW - Apis mellifera KW - non-SBI fungicide KW - insecticide KW - pesticide mixture KW - synergistic effect KW - sublethal effect Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-350047 VL - 256 ER -