TY - JOUR A1 - Hebestreit, Helge A1 - Schmid, Kerstin A1 - Kieser, Stephanie A1 - Junge, Sibylle A1 - Ballmann, Manfred A1 - Roth, Kristina A1 - Hebestreit, Alexandra A1 - Schenk, Thomas A1 - Schindler, Christian A1 - Posselt, Hans-Georg A1 - Kriemler, Susi T1 - Quality of life is associated with physical activity and fitness in cystic fibrosis N2 - Background Health-related and disease-specific quality of life (HRQoL) has been increasingly valued as relevant clinical parameter in cystic fibrosis (CF) clinical care and clinical trials. HRQoL measures should assess – among other domains – daily functioning from a patient’s perspective. However, validation studies for the most frequently used HRQoL questionnaire in CF, the Cystic Fibrosis Questionnaire (CFQ), have not included measures of physical activity or fitness. The objective of this study was, therefore, to determine the cross-sectional and longitudinal relationships between HRQoL, physical activity and fitness in patients with CF. Methods Baseline (n = 76) and 6-month follow-up data (n = 70) from patients with CF (age ≥12 years, FEV1 ≥35%) were analysed. Patients participated in two multi-centre exercise intervention studies with identical assessment methodology. Outcome variables included HRQoL (German revised multi-dimensional disease-specific CFQ (CFQ-R)), body composition, pulmonary function, physical activity, short-term muscle power, and aerobic fitness by peak oxygen uptake and aerobic power. Results Peak oxygen uptake was positively related to 7 of 13 HRQoL scales cross-sectionally (r = 0.30-0.46). Muscle power (r = 0.25-0.32) and peak aerobic power (r = 0.24-0.35) were positively related to 4 scales each, and reported physical activity to 1 scale (r = 0.29). Changes in HRQoL-scores were directly and significantly related to changes in reported activity (r = 0.35-0.39), peak aerobic power (r = 0.31-0.34), and peak oxygen uptake (r = 0.26-0.37) in 3 scales each. Established associates of HRQoL such as FEV1 or body mass index correlated positively with fewer scales (all 0.24 < r < 0.55). Conclusions HRQoL was associated with physical fitness, especially aerobic fitness, and to a lesser extent with reported physical activity. These findings underline the importance of physical fitness for HRQoL in CF and provide an additional rationale for exercise testing in this population. KW - Exercise testing KW - Oxygen uptake KW - Longitudinal analysis KW - Accelerometry KW - Questionnaire Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110508 ER - TY - THES A1 - Schmid, Kerstin T1 - Integrative, three-dimensional \(in\) \(silico\) modeling of gas exchange in the human alveolus T1 - Integrative, dreidimensionale \(in\) \(silico\) Modellierung des Gasaustauschs in der menschlichen Alveole N2 - Die Lunge erfüllt durch den Austausch von Atemgasen eine überlebenswichtige Aufgabe. Der Gasaustausch erfolgt durch einen einfachen, aber entscheidenden passiven Diffusionsprozess. Dieser findet in den Alveolen statt, ballonartigen Strukturen, die an die peripheren Atemwege grenzen. Alveolen sind von einem dichten Netz aus kleinen Kapillaren umgeben. Hier kommt die eingeatmete Luft in unmittelbare Nähe zu dem vom Herzen kommenden sauerstoffarmen Blut und ermöglicht den Austausch von Sauerstoff und Kohlenstoffdioxid über deren Konzentrationsgradienten. Die Effizienz des Gasaustauschs kann anhand von Indikatoren wie der Sauerstoffdiffusionskapazität der Lunge und der Reaktionshalbzeit gemessen werden. Beim Menschen besteht eine beträchtliche Diskrepanz zwischen physiologischen Schätzungen der Diffusionskapazität und der theoretischen Maximalkapazität unter optimalen strukturellen Bedingungen (der morphologischen Schätzung). Diese Diskrepanz wird durch eine Reihe ineinandergreifender Faktoren beeinflusst, darunter strukturelle Elemente wie die Oberfläche und die Dicke der Diffusionsbarriere sowie physiologische Faktoren wie die Blutflussdynamik. Um die verschiedenen Rollen dieser Faktoren zu entschlüsseln, untersuchten wir, wie die morphologischen und physiologischen Eigenschaften der menschlichen alveolären Mikroumgebung kollektiv und individuell den Prozess des Gasaustauschs beeinflussen. Zu diesem Zweck entwickelten wir einen integrativen in silico Ansatz, der 3D morphologische Modellierung und Simulation von Blutfluss und Sauerstofftransport kombiniert. Im Mittelpunkt unseres Ansatzes steht die Simulationssoftware Alvin, die als interaktive Plattform für das zugrundeliegende mathematische Modell des Sauerstofftransports in der Alveole dient. Unser räumlich-zeitliches Modell wurde durch die Integration und Erweiterung bestehender mathematischer Modelle entwickelt und liefert Ergebnisse, die mit experimentellen Daten im Einklang stehen. Alvin ermöglicht eine immersive Auseinandersetzung mit dem simulierten Gasaustausch, indem sie Parameteränderungen in Echtzeit und die Ausführung mehrerer Simulationsinstanzen gleichzeitig ermöglicht während sie ein detailliertes quantitatives Feedback liefert. Die beteiligten morphologischen und physiologischen Parameter wurden mit einem Fokus auf der Mikrovaskulatur weiter untersucht. Durch die Zusammenstellung stereologischer Daten aus der Literatur und geometrischer 3D-Modellierung erstellten wir ein "sheet-flow" Modell als realistische Darstellung des menschlichen alveolären Kapillarnetzwerks. Blutfluss wurde mit Hilfe numerischer Strömungsdynamik simuliert. Unsere Ergebnisse stimmen mit früheren Schätzungen überein und unterstreichen die entscheidende Rolle von Viskositätsmodellen bei der Vorhersage des Druckabfalls in der Mikrovaskulatur. Darüber hinaus zeigten wir, wie unser Ansatz genutzt werden kann, um strukturelle Details wie die Konnektivität des alveolären Kapillarnetzes mit dem Gefäßbaum anhand von Blutflussindizes zu untersuchen. Es ist wichtig zu betonen, dass wir uns bislang auf verschiedene Datenquellen stützten und dass für weitere Fortschritte eine experimentelle Vailidierung erforderlich ist. Die Integration unserer Ergebnisse in Alvin ermöglichte die Quantifizierung des simulierten Gasaustauschprozesses über die Sauerstoffdiffusionskapazität und die Reaktionshalbzeit. Neben der Bewertung der kollektiven Einflüsse der morphologischen und physiologischen Eigenschaften erleichterte unsere interaktive Software auch die Bewertung einzelner Parameteränderungen. Die Betrachtung des Blutvolumens und der für den Gasaustausch zur Verfügung stehenden Oberfläche ergab lineare Korrelationen mit der Diffusionskapazität. Die Blutflussgeschwindigkeit hatte einen positiven, nichtlinearen Effekt auf die Diffusionskapazität. Die Reaktionshalbzeit bestätigte, dass der Gasaustauschprozess in der Regel nicht diffusionslimitiert ist. Insgesamt lieferte unser Alveolenmodell einen Wert für die Diffusionskapazität, der in der Mitte der früheren physiologischen und morphologischen Schätzung lag. Daraus lässt sich schließen, dass Phänomene auf Alveolarebene zu 50% der Limitierung der Diffusionskapazität beitragen, die in vivo eintreten. Zusammenfassend lässt sich sagen, dass unser integrativer in silico Ansatz verschiedene strukturelle und funktionelle Einflüsse auf den alveolären Gasaustausch aufschlüsselt und damit die traditionelle Forschung in der Atemwegsforschung ergänzt. Zusätzlich zeigen wir seinen Nutzen in der Lehre oder bei der Interpretation veröffentlichter Daten auf. Um unser Verständnis zu verbessern, sollten künftige Arbeiten vorrangig darauf ausgerichtet sein, einen zusammenhängenden experimentellen Datensatz zu erhalten und ein geeignetes Viskositätsmodell für Blutflusssimulationen zu finden. N2 - The lung plays a vital role by exchanging respiratory gases. At the core of this gas exchange is a simple yet crucial passive diffusion process occurring within the alveoli. These balloon-like structures, connected to the peripheral airways, are surrounded by a dense network of small capillaries. Here, inhaled air comes into close proximity with deoxygenated blood coming from the heart, enabling the exchange of oxygen and carbon dioxide across their concentration gradients. The efficiency of gas exchange can be measured through indicators such as the diffusion capacity of the lung for oxygen and the reaction half-time. A notable discrepancy exists in humans between physiological estimates of diffusion capacity and the theoretical maximum capacity under optimal structural conditions (morphological estimate). This discrepancy is influenced by a range of interrelated factors, including structural elements like the surface area and thickness of the diffusion barrier, as well as physiological factors such as blood flow dynamics. To unravel the different roles of these factors, we investigated how morphological and physiological properties of the human alveolar micro-environment collectively and individually influence the process of gas exchange. To this end, we developed an integrative in silico approach combining 3D morphological modeling and simulation of blood flow and of oxygen transport. At the core of our approach lies the simulation software Alvin, serving as an interactive platform for the underlying mathematical model of oxygen transport within the alveolus. Developed by integrating and expanding existing mathematical models, our spatio-temporal model produces results in agreement with experimental data. Alvin allows for real-time parameter adjustments and the execution of multiple simultaneous simulation instances and provides detailed quantitative feedback, offering an immersive exploration of the simulated gas exchange process. The morphological and physiological parameters at play were further investigated with a focus on the microvasculature. By compiling a stereological database from the literature and 3D geometric modeling, we created a sheet-flow model as a realistic representation of the morphology of the human alveolar capillary network. Blood flow was simulated using computational fluid dynamics. Our findings were in line with previous estimations and highlighted the crucial role of viscosity models in predicting pressure drop across the microvasculature. Furthermore, we showcased how our approach can be harnessed to explore structural details, such as the connectivity of the alveolar capillary network with the vascular tree, using blood flow indices. It is important to emphasize that so far we have relied on different data sources and that experimental validation is needed to move forward. Integration of our findings into Alvin allowed quantification of the simulated gas exchange process through the diffusion capacity for oxygen and reaction half-time. In addition to evaluating the collective influences of the morphological and physiological properties, our interactive software facilitates the assessment of individual parameter value changes. Exploring blood volume and surface area available for gas exchange revealed linear correlations with diffusion capacity. The blood flow velocity had a positive, non-linear effect on diffusion capacity. The reaction half-time confirmed that under normal conditions, the gas exchange process is not diffusion-limited. Collectively, our alveolar model yielded a diffusion capacity value that fell in the middle of previous physiological and morphological estimates, implying that alveolar-level phenomena contribute to 50% of the diffusion capacity limitations that occur in vivo. In summary, our integrative in silico approach disentangles various structural and functional influences on alveolar gas exchange, complementing traditional investigations in respiratory research. We further showcase its utility in teaching and the interpretation of published data. To advance our understanding, future work should prioritize obtaining a cohesive experimental data set and identifying an appropriate viscosity model for blood flow simulations. KW - Gasaustausch KW - alveolarer Gasaustausch KW - alveolar gas exchange KW - data-driven in silico modeling KW - datengesteuerte in silico Modellierung KW - interactive simulation KW - interaktive Simulation Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-351823 ER -