TY - JOUR A1 - Löhr, Mario A1 - Härtig, Wolfgang A1 - Schulze, Almut A1 - Kroiß, Matthias A1 - Sbiera, Silviu A1 - Lapa, Constantin A1 - Mages, Bianca A1 - Strobel, Sabrina A1 - Hundt, Jennifer Elisabeth A1 - Bohnert, Simone A1 - Kircher, Stefan A1 - Janaki-Raman, Sudha A1 - Monoranu, Camelia-Maria T1 - SOAT1: A suitable target for therapy in high-grade astrocytic glioma? JF - International Journal of Molecular Sciences N2 - Targeting molecular alterations as an effective treatment for isocitrate dehydrogenase-wildtype glioblastoma (GBM) patients has not yet been established. Sterol-O-Acyl Transferase 1 (SOAT1), a key enzyme in the conversion of endoplasmic reticulum cholesterol to esters for storage in lipid droplets (LD), serves as a target for the orphan drug mitotane to treat adrenocortical carcinoma. Inhibition of SOAT1 also suppresses GBM growth. Here, we refined SOAT1-expression in GBM and IDH-mutant astrocytoma, CNS WHO grade 4 (HGA), and assessed the distribution of LD in these tumors. Twenty-seven GBM and three HGA specimens were evaluated by multiple GFAP, Iba1, IDH1 R132H, and SOAT1 immunofluorescence labeling as well as Oil Red O staining. To a small extent SOAT1 was expressed by tumor cells in both tumor entities. In contrast, strong expression was observed in glioma-associated macrophages. Triple immunofluorescence labeling revealed, for the first time, evidence for SOAT1 colocalization with Iba1 and IDH1 R132H, respectively. Furthermore, a notable difference in the amount of LD between GBM and HGA was observed. Therefore, SOAT1 suppression might be a therapeutic option to target GBM and HGA growth and invasiveness. In addition, the high expression in cells related to neuroinflammation could be beneficial for a concomitant suppression of protumoral microglia/macrophages. KW - SOAT1 KW - glioblastoma KW - astrocytoma KW - IDH1/2 KW - lipid droplets KW - mitotane KW - targeted therapy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284178 SN - 1422-0067 VL - 23 IS - 7 ER - TY - JOUR A1 - Hartmann, Oliver A1 - Reissland, Michaela A1 - Maier, Carina R. A1 - Fischer, Thomas A1 - Prieto-Garcia, Cristian A1 - Baluapuri, Apoorva A1 - Schwarz, Jessica A1 - Schmitz, Werner A1 - Garrido-Rodriguez, Martin A1 - Pahor, Nikolett A1 - Davies, Clare C. A1 - Bassermann, Florian A1 - Orian, Amir A1 - Wolf, Elmar A1 - Schulze, Almut A1 - Calzado, Marco A. A1 - Rosenfeldt, Mathias T. A1 - Diefenbacher, Markus E. T1 - Implementation of CRISPR/Cas9 Genome Editing to Generate Murine Lung Cancer Models That Depict the Mutational Landscape of Human Disease JF - Frontiers in Cell and Developmental Biology N2 - Lung cancer is the most common cancer worldwide and the leading cause of cancer-related deaths in both men and women. Despite the development of novel therapeutic interventions, the 5-year survival rate for non-small cell lung cancer (NSCLC) patients remains low, demonstrating the necessity for novel treatments. One strategy to improve translational research is the development of surrogate models reflecting somatic mutations identified in lung cancer patients as these impact treatment responses. With the advent of CRISPR-mediated genome editing, gene deletion as well as site-directed integration of point mutations enabled us to model human malignancies in more detail than ever before. Here, we report that by using CRISPR/Cas9-mediated targeting of Trp53 and KRas, we recapitulated the classic murine NSCLC model Trp53fl/fl:lsl-KRasG12D/wt. Developing tumors were indistinguishable from Trp53fl/fl:lsl-KRasG12D/wt-derived tumors with regard to morphology, marker expression, and transcriptional profiles. We demonstrate the applicability of CRISPR for tumor modeling in vivo and ameliorating the need to use conventional genetically engineered mouse models. Furthermore, tumor onset was not only achieved in constitutive Cas9 expression but also in wild-type animals via infection of lung epithelial cells with two discrete AAVs encoding different parts of the CRISPR machinery. While conventional mouse models require extensive husbandry to integrate new genetic features allowing for gene targeting, basic molecular methods suffice to inflict the desired genetic alterations in vivo. Utilizing the CRISPR toolbox, in vivo cancer research and modeling is rapidly evolving and enables researchers to swiftly develop new, clinically relevant surrogate models for translational research. KW - non-small cell lung cancer KW - CRISPR-Cas9 KW - mouse model KW - lung cancer KW - MYC KW - JUN Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230949 SN - 2296-634X VL - 9 ER - TY - JOUR A1 - Klein-Hessling, Stefan A1 - Muhammad, Khalid A1 - Klein, Matthias A1 - Pusch, Tobias A1 - Rudolf, Ronald A1 - Flöter, Jessica A1 - Qureischi, Musga A1 - Beilhack, Andreas A1 - Vaeth, Martin A1 - Kummerow, Carsten A1 - Backes, Christian A1 - Schoppmeyer, Rouven A1 - Hahn, Ulrike A1 - Hoth, Markus A1 - Bopp, Tobias A1 - Berberich-Siebelt, Friederike A1 - Patra, Amiya A1 - Avots, Andris A1 - Müller, Nora A1 - Schulze, Almut A1 - Serfling, Edgar T1 - NFATc1 controls the cytotoxicity of CD8\(^{+}\) T cells JF - Nature Communications N2 - Cytotoxic T lymphocytes are effector CD8\(^{+}\) T cells that eradicate infected and malignant cells. Here we show that the transcription factor NFATc1 controls the cytotoxicity of mouse cytotoxic T lymphocytes. Activation of Nfatc1\(^{-/-}\) cytotoxic T lymphocytes showed a defective cytoskeleton organization and recruitment of cytosolic organelles to immunological synapses. These cells have reduced cytotoxicity against tumor cells, and mice with NFATc1-deficient T cells are defective in controlling Listeria infection. Transcriptome analysis shows diminished RNA levels of numerous genes in Nfatc1\(^{-/-}\) CD8\(^{+}\) T cells, including Tbx21, Gzmb and genes encoding cytokines and chemokines, and genes controlling glycolysis. Nfatc1\(^{-/-}\), but not Nfatc2\(^{-/-}\) CD8\(^{+}\) T cells have an impaired metabolic switch to glycolysis, which can be restored by IL-2. Genome-wide ChIP-seq shows that NFATc1 binds many genes that control cytotoxic T lymphocyte activity. Together these data indicate that NFATc1 is an important regulator of cytotoxic T lymphocyte effector functions. KW - cytotoxic T cells KW - lymphocyte activation KW - signal transduction KW - gene regulation KW - immune cells KW - NFATc1 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170353 VL - 8 IS - 511 ER -