TY - JOUR A1 - Eder, Sascha A1 - Hollmann, Claudia A1 - Mandasari, Putri A1 - Wittmann, Pia A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Fink, Julian A1 - Seibel, Jürgen A1 - Schneider-Schaulies, Jürgen A1 - Stigloher, Christian A1 - Beyersdorf, Niklas A1 - Dembski, Sofia T1 - Synthesis and characterization of ceramide-containing liposomes as membrane models for different T cell subpopulations JF - Journal of Functional Biomaterials N2 - A fine balance of regulatory (T\(_{reg}\)) and conventional CD4\(^+\) T cells (T\(_{conv}\)) is required to prevent harmful immune responses, while at the same time ensuring the development of protective immunity against pathogens. As for many cellular processes, sphingolipid metabolism also crucially modulates the T\(_{reg}\)/T\(_{conv}\) balance. However, our understanding of how sphingolipid metabolism is involved in T cell biology is still evolving and a better characterization of the tools at hand is required to advance the field. Therefore, we established a reductionist liposomal membrane model system to imitate the plasma membrane of mouse T\(_{reg}\) and T\(_{conv}\) with regards to their ceramide content. We found that the capacity of membranes to incorporate externally added azide-functionalized ceramide positively correlated with the ceramide content of the liposomes. Moreover, we studied the impact of the different liposomal preparations on primary mouse splenocytes in vitro. The addition of liposomes to resting, but not activated, splenocytes maintained viability with liposomes containing high amounts of C\(_{16}\)-ceramide being most efficient. Our data thus suggest that differences in ceramide post-incorporation into T\(_{reg}\) and T\(_{conv}\) reflect differences in the ceramide content of cellular membranes. KW - liposome KW - ceramide KW - cell membrane model Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286130 SN - 2079-4983 VL - 13 IS - 3 ER - TY - JOUR A1 - Peters, Simon A1 - Kaiser, Lena A1 - Fink, Julian A1 - Schumacher, Fabian A1 - Perschin, Veronika A1 - Schlegel, Jan A1 - Sauer, Markus A1 - Stigloher, Christian A1 - Kleuser, Burkhard A1 - Seibel, Juergen A1 - Schubert-Unkmeir, Alexandra T1 - Click-correlative light and electron microscopy (click-AT-CLEM) for imaging and tracking azido-functionalized sphingolipids in bacteria JF - Scientific Reports N2 - Sphingolipids, including ceramides, are a diverse group of structurally related lipids composed of a sphingoid base backbone coupled to a fatty acid side chain and modified terminal hydroxyl group. Recently, it has been shown that sphingolipids show antimicrobial activity against a broad range of pathogenic microorganisms. The antimicrobial mechanism, however, remains so far elusive. Here, we introduce 'click-AT-CLEM', a labeling technique for correlated light and electron microscopy (CLEM) based on the super-resolution array tomography (srAT) approach and bio-orthogonal click chemistry for imaging of azido-tagged sphingolipids to directly visualize their interaction with the model Gram-negative bacterium Neisseria meningitidis at subcellular level. We observed ultrastructural damage of bacteria and disruption of the bacterial outer membrane induced by two azido-modified sphingolipids by scanning electron microscopy and transmission electron microscopy. Click-AT-CLEM imaging and mass spectrometry clearly revealed efficient incorporation of azido-tagged sphingolipids into the outer membrane of Gram-negative bacteria as underlying cause of their antimicrobial activity. KW - antimicrobials KW - biological techniques KW - imaging KW - microbiology KW - microbiology techniques KW - microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259147 VL - 11 IS - 1 ER - TY - JOUR A1 - Solger, Franziska A1 - Kunz, Tobias C. A1 - Fink, Julian A1 - Paprotka, Kerstin A1 - Pfister, Pauline A1 - Hagen, Franziska A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Seibel, Jürgen A1 - Rudel, Thomas T1 - A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae JF - Frontiers in Cellular and Infection Microbiology N2 - Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells. KW - sphingosine KW - sphingolipids KW - sphingosine kinases KW - invasion KW - survival KW - click chemistry Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-204111 SN - 2235-2988 VL - 10 ER - TY - JOUR A1 - Wiese, Teresa A1 - Dennstädt, Fabio A1 - Hollmann, Claudia A1 - Stonawski, Saskia A1 - Wurst, Catherina A1 - Fink, Julian A1 - Gorte, Erika A1 - Mandasari, Putri A1 - Domschke, Katharina A1 - Hommers, Leif A1 - Vanhove, Bernard A1 - Schumacher, Fabian A1 - Kleuser, Burkard A1 - Seibel, Jürgen A1 - Rohr, Jan A1 - Buttmann, Mathias A1 - Menke, Andreas A1 - Schneider-Schaulies, Jürgen A1 - Beyersdorf, Niklas T1 - Inhibition of acid sphingomyelinase increases regulatory T cells in humans JF - Brain Communications N2 - Genetic deficiency for acid sphingomyelinase or its pharmacological inhibition has been shown to increase Foxp3\(^+\) regulatory T-cell frequencies among CD4\(^+\) T cells in mice. We now investigated whether pharmacological targeting of the acid sphingomyelinase, which catalyzes the cleavage of sphingomyelin to ceramide and phosphorylcholine, also allows to manipulate relative CD4\(^+\) Foxp3\(^+\) regulatory T-cell frequencies in humans. Pharmacological acid sphingomyelinase inhibition with antidepressants like sertraline, but not those without an inhibitory effect on acid sphingomyelinase activity like citalopram, increased the frequency of Foxp3\(^+\) regulatory T cell among human CD4\(^+\) T cells in vitro. In an observational prospective clinical study with patients suffering from major depression, we observed that acid sphingomyelinase-inhibiting antidepressants induced a stronger relative increase in the frequency of CD4\(^+\) Foxp3\(^+\) regulatory T cells in peripheral blood than acid sphingomyelinase-non- or weakly inhibiting antidepressants. This was particularly true for CD45RA\(^-\) CD25\(^{high}\) effector CD4\(^+\) Foxp3\(^+\) regulatory T cells. Mechanistically, our data indicate that the positive effect of acid sphingomyelinase inhibition on CD4\(^+\) Foxp3\(^+\) regulatory T cells required CD28 co-stimulation, suggesting that enhanced CD28 co-stimulation was the driver of the observed increase in the frequency of Foxp3+ regulatory T cells among human CD4\(^+\) T cells. In summary, the widely induced pharmacological inhibition of acid sphingomyelinase activity in patients leads to an increase in Foxp3+ regulatory T-cell frequencies among CD4\(^+\) T cells in humans both in vivo and in vitro. KW - acid sphingomyelinase KW - antidepressants KW - major depression KW - regulatory T cells KW - sphingolipids Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259868 VL - 3 IS - 2 ER -