TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Marcus, Charles A1 - Sheikhbahaei, Sara A1 - Solnes, Lilja B. A1 - Leal, Jeffrey P. A1 - Du, Yong A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. T1 - Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging JF - Clinical Nuclear Medicine N2 - PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7%, ĸ = 0.75) compared to semiquantification (86.2%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment. KW - Single-Photon-Emissions-Computertomographie KW - SPECT KW - Parkinson’s disease KW - Parkinsonism KW - DaTscan KW - 123I-Ioflupane KW - SPECT KW - SPECT/CT Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168181 SN - 1536-0229 VL - 44 IS - 1 ER -