TY - JOUR A1 - Kruse, N. A1 - Shen, B. J. A1 - Arnold, S. A1 - Tony, H. P. A1 - Müller, T. A1 - Sebald, Walter T1 - Two distinct functional sites of human interleukin 4 are identified by variants impaired in either receptor binding or receptor activation N2 - Interleukin 4 (IL-4) exerts a decisive role in the coord.ination of proteelive immune responses against parasites, particularly helminths. A disregulation of ll.r4 function is possibly involved in the genesis of allergic disease states. The search for important amino acid residues in human ll.r4 by mutational analysis of charged invariant amino acid positions identified two distinct functional sites in the 4-helix-bundle protein. Site 1 was marked by amino acid substitutions of the glutamic acid at position 9 in helix A and arginine at position 88 in helix C. Exchanges at both positions led to IL-4 variants deficient in binding to the extracellular domain of the ll.r4 receptor (IL-4ReJ. In parallel, up to 1000-fold increased concentrations of this type of variant were required to induce T -cell proliferation and B-eeil CD23 expression. Site 2 was marked by amino acid exchanges in helix D at positions 121, 124 and 125 (arginine, tyrosine and serine respectively in the wild-type).ß.A variants affected at site 2 exhibited partial agonist activity during T -cell proliferation; however, they still bound with high affinity to IL-4Rex. [The generation of an IL-4 antagonist by replacing tyrosine 124 with aspartic acid has been described before by Kruse et al. (1992) (EMBO }., 11, 3237-3244)]. These findings indicate that IL-4 functions by bind.ing IL-4Rex via site 1 which is constituted by residues on helices A and C. They further suggest that the association of a second, still undetined receptor protein with site 2 in helix D activates the receptor system and generates a transmembrane signal. KW - Biochemie KW - drug design/partial agonists KW - receptor signalling Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62451 ER - TY - JOUR A1 - Tony, H. P. A1 - Shen, B. J. A1 - Reusch, P. A1 - Sebald, Walter T1 - Design of human interleukin-4 antagonists inhibiting interleukin-4-dependent and interleukin-13-dependent responses in T-cells and B-cells with high efficiency N2 - Human interleukin-4 possesses two distinct sites for receptor activation. A signaHing site, comprising residues near the C-terminus on helix D, determines the efficacy of interleukin-4 signal transduction without affecting the binding to the interleukin-4 receptor a subunit. A complete antagonist and a series of low-efficacy agonist variants of human interleukin-4 could be generated by introducing combinations of two or three negatively charged aspartic acid residues in this site at positions 121, 124, and 125. One of the double variants, designated [R121D,Y124D]interleukin-4, with replacements of böth Arg121 and Tyr124 by aspartic acid residues was completely inactive in all analysed cellular responses. The loss of efficacy in [R121D,Y124D]interleukin-4 is estimated to be larger than 2000-fold. Variant [R121D,Y124D]interleukin-4 was also a perfect antagonist for inhibition of interleukin-13-dependent responses in B-cells and the TF-1 cellline with a K\(_i\) value of approximately 100 pM. In addition, inhibition of both interleukin-4-induced and interleuk.in-13- induced responses could be obtained by monoclonal antibody X2/45 raised against interleukin-4Rm the extracellular domain of the interleuk.in-4 receptor a subunit. These results indicate that efficient interleukin-4 antagonists can be designed on the basis of a sequential two-step activation model. In addition, the experiments indicate the functional participation of the interleukin-4 receptor a subunit in the interleukin-13 receptor system. KW - Biochemie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62394 ER -