TY - JOUR A1 - Paakkari, P. A1 - Paakkari, I. A1 - Vonhof, S. A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Dermorphin analog Tyr-D-Arg\(^2\)-Phe-sarcosine-induces opioid analgesia and respiratory stimulation - the role of Mu\(_1\)- receptors? N2 - Tyr-o-Arg\(^2\)-Phe-sarcosine\(^4\) (TAPS), a mu-selective tetrapeptide analog of dermorphin, induced sustained antinociception and stimulated ventilatory minute volume (MV) at the doses of 3 to 100 pmol i.c.v. The doses of 30 and 100 pmol i.c.v. induced catalepsy. The effect of TAPS on MV was in negative correlation with the dose and the maximal response was achieved by the lowest (3 pmol) dose (+63 ± 23%, P < .05). Morphine, an agonist at both mu\(_1\) and mu\(_2\) sites, at a dose of 150 nmol i.c.v. (equianalgetic to 100 pmol of TAPS decreased the MV by 30%, due to a decrease in ventilatory tidal volume. The antinociceptive effect of TAPS was antagonized by naloxone and the mu, receptor antagonist, naloxonazine. Naloxonazine also attenuated the catalepsy produced by 1 00 pmol of TAPS i.c. v. and the respiratory Stimulation produced by 3 pmol of TAPS i.c.v. Pretreatment with 30 pmol of TAPS antagonized the respiratory depression induced by the mu opioid agonist dermorphin (changes in MV after dermorphin alone at 1 or 3 nmol were -22 ± 1 0% and -60 ± 9% and, after pretreatment with TAPS, +44 ± 11 % and -18 ± 5%, respectively). After combined pretreatment with naloxonazine and TAPS, 1 nmol of dermorphin had no significant effect on ventilation. In contrast, pretreatment with a low respiratory stimulant dose (10 pmol i.c.v.) of dermorphin did not modify the effect of 1 nmol of dermorphin. ln conclusion, the antinociceptive, cataleptic and respiratory stimulant effects of TAPS appear to be a related to its agonist action at the mu, opioid receptors. TAPS did not induce respiratory depression (a mu\(_2\) opioid effect) but antagonized the respiratory depressant effect of another mu agonist. Thus, in vivo TAPS appears to act as a mu\(_2\) receptor antagonist. KW - Neurobiologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62984 ER - TY - JOUR A1 - Paakkari, P. A1 - Paakkari, I. A1 - Landes, P. A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - Respiratory \(\mu\)-Opioid and benzodiazepine interactions in the understrained rat N2 - lnteractions of p-opioid receptors with the benzodiazepine system were studied by examining the modulatory effects of flumazenil (a benzodiazepine antagonist) and alprazolam (a benzodiazepine agonist) on the respiratory effects ofthe opioid peptide dermorphin. Dermorphin, 1-30 nmol administered i.c.v., to conscious, unrestrained rats decreased ventilation rate (VR) and minute volume (MV) dose-dependently. The ventilatory depression was antagonized by naloxone and by the benzodiazepine antagonist flumazenil. The benzodiazepine alprazolam potentiateri the respiratory inhibition of a small (I nmol) dose of dermorphin but antagonized that of a higher dos:~ (3 nmol). The results suggest that the benzodiazepine/GABA receptor complex modulates respiratory depression induced by centrat p-receptor Stimulation in the rat. KW - Neurobiologie KW - dermorphin KW - opioid receptors KW - opioid-benzodiazepine interactions KW - respiration KW - flumazenil KW - benzodiazepine antagonist. Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62974 ER -