TY - JOUR A1 - Vonhof, S. A1 - Sirén, Anna-Leena A1 - Feuerstein, Giora T1 - Volume-dependent spatial distribution of microinjected thyrotropin-releasing hormone (TRH) into the medial preoptic nucleus of the rat N2 - The present study was performed to qua ntify the distribution of a peptide neurotransmitter after microinjection into the medial preoptic area (POM), using a technique suitable for conscious animal preparations. The results indicate that only 50-ni volumes of injected tracer were sufficiently localized with 77 ± 9% recovery in the POM. Injections of higher volumes resulted in an increasing spread of tracer into distant anatomical regions and structures, including the needle tract and cerebral ventricles. The amount of tracer localized in the POM decreased to 38±4% (200 nl) (P < 0.05) and 41 ±8% (500 nl) (P <0.05), respectively. The data suggest that the volume of injection is critical for intraparenchymal injections into structures of a diameter of I mm or less, such as the POM and should not exceed 50 nl in conscious animal preparations. KW - Neurophysiologie KW - Neurobiologie KW - Autoradiography KW - Microinjection KW - Hypothalamus KW - TRH KW - Neuropeptides KW - [3H][3Me-His2]-TRH Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47421 ER - TY - RPRT A1 - Wang, X. A1 - Sirén, Anna-Leena A1 - Liu, Y. A1 - Yue, T-L. A1 - Barone, F. C. A1 - Feuerstein, G. Z. T1 - Upregulation of intercellular adhesion molecule-1 (ICAM-1) on brain microvascular endothelial cells in rat ischemic cortex [Research Report] N2 - The expression of intercellular adhesion molecule 1 (ICAM-1) was studied in rat focal ischemic cortex. A significant increase in ICAM-1 mRNA expression in the ischemic cortex over Ievels in contralateral (nonischemic) site was observed by means of Northern blot analysis following either permanent or temporary occlusion with reperfusion of the middle cerebral artery (PMCAO or MCAO with reperfusion) in spontaneously hypertensive rats. In the ischemic cortex, Ievels of ICAM-1 mRNA increased significantly at 3 h (2.6-fold, n = 3, P < 0.05), peaked at 6 to 12 h (6.0-fold, P < 0.01) and remained elevated up to 5 days (2.5-fold, P < 0.05) after PMCAO. The profile of ICAM-1 mRNA expression in the ischemic cortex following MCAO with reperfusion was similar to that following PMCAO, except that ICAM-1 mRNA was significantly increased as early as 1 h (6.3-fold, n = 3, P < 0.05) and then gradually reached a peak at 12 h (12-fold, P < 0.01) after reperfusion. ICAM-1 mRNA expression in ischemic cortex following PMCAO was significantly greater in hypertensive rats than in two normotensive rat strains. Immunostaining using anti-ICAM-1 antiborlies indicated that upregulated ICAM-1 expressionwas localized to endotheIial cells of intraparenchymal blood vessels in the ischemic but not contralateral cortex. The data suggest that an upregulation of ICAM-1 mRNA and protein on brain capillary endothelium may play an important rote in leukocyte migration into ischemic brain tissue. KW - Neurobiologie KW - Intercellular adhesion molecule 1 KW - Focal brain ischemia KW - Stroke KW - Reperfusion KW - lnflammation Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62952 ER - TY - JOUR A1 - Lichter, Katharina A1 - Paul, Mila Marie A1 - Pauli, Martin A1 - Schoch, Susanne A1 - Kollmannsberger, Philip A1 - Stigloher, Christian A1 - Heckmann, Manfred A1 - Sirén, Anna-Leena T1 - Ultrastructural analysis of wild-type and RIM1α knockout active zones in a large cortical synapse JF - Cell Reports N2 - Rab3A-interacting molecule (RIM) is crucial for fast Ca\(^{2+}\)-triggered synaptic vesicle (SV) release in presynaptic active zones (AZs). We investigated hippocampal giant mossy fiber bouton (MFB) AZ architecture in 3D using electron tomography of rapid cryo-immobilized acute brain slices in RIM1α\(^{−/−}\) and wild-type mice. In RIM1α\(^{−/−}\), AZs are larger with increased synaptic cleft widths and a 3-fold reduced number of tightly docked SVs (0–2 nm). The distance of tightly docked SVs to the AZ center is increased from 110 to 195 nm, and the width of their electron-dense material between outer SV membrane and AZ membrane is reduced. Furthermore, the SV pool in RIM1α\(^{−/−}\) is more heterogeneous. Thus, RIM1α, besides its role in tight SV docking, is crucial for synaptic architecture and vesicle pool organization in MFBs. KW - active zone KW - acute brain slices KW - CA3 KW - electron tomography KW - high-pressure freezing KW - hippocampal mossy fiber bouton KW - RIM1α KW - SV pool KW - synaptic ultrastructure KW - presynaptic Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300913 VL - 40 IS - 12 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - Thyrotropin releasing hormone-induced hindquarter vasodilation is mediated by \(\beta _2\)-adrenoceptors N2 - No abstract available KW - Neurobiologie Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63155 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Powell, E. A1 - Feuerstein, G. T1 - Thyrotropin releasing hormone in hypovolemia: a hemodynamic evaluation in the rat N2 - ln the present study the effects of thyrotropin releasing hormone (TRH) and its stable analogue, CG3703, on cardiac output (thermodilution, Cardiomax) and regional blood flow (BF; directional pulsed Doppler technique) were investigated in hypovolemic hypotension in the rat. In urethan-anesthetized rats TRH (0.5 or 2 mg/ kg ia) or CG3703 (0.05 or 0.5 mg/kg ia) reversed the bleeding (27% of the blood volume)-induced decreases in mean arterial ... KW - Neurobiologie KW - cardiac output KW - total peripheral resistance KW - regional blood flow Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63288 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - The Opioid System in circulatory control N2 - Opioid peptidesandmultiple opioid receptors are found in brain cardiovascular nuclei, autonomic ganglia, the heart, and blood vessels, and opioids induce potent cardiovascular changes. The role of endogenaus opioids in normal cardiovascular homeostasis is unclear; however, current data suggest opioid involvement in stress. KW - Neurobiologie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63045 ER - TY - JOUR A1 - Feuerstein, Giora A1 - Sirén, Anna-Leena T1 - The Opioid System in cardiac and vascular regulation of normal and hypertensive states N2 - The endogenous opioid system includes three major families of peptides: dynorphins (derived from pre-proenkephalin B), endorphins (derived from pre-proopiomelanocortin), and enkephalins (derived from pre-proenkephalin A). Multiple species of opioid peptides are derived from these major precursors and many of them possess potent cardiovascular properties. Opioid peptides and opioid receptors, of which multiple forms have been defined, are present in the central nervous system and peripheral neural elements. In the central nervous system, opioid peptides and receptors are found in forebrain and hindbrain nuclei involved in baroregulation, sympathoadrenal activation, and several other vital autonomic functions. In the periphery, opioid peptides are found in autonomic ganglia, adrenal gland, heart, and other organs; multiple opioid receptors are also found in vascular tissue, heart, and kidneys. Although little is known to date on the regulatory mechanisms of the opioid system in normal cardiovascular states, it became clear that cardiovascular stress situations substantially modify the activity of the endogenous opioid system. The purpose of this review is to clarify the sites of interaction of the opioid system with all major components of the cardiovascular system and indicate the potential role of this system in the ontogenesis of cardiac malfunction, vascular diseases, and hypertension. KW - Medizin Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47418 ER - TY - JOUR A1 - Frerichs, K. A1 - Sirèn, Anna-Leena A1 - Feuerstein, G. A1 - Hallenbeck, JM T1 - The onset of postischemic hypoperfusion in rats is precipitous and may be controlled by local neurons N2 - Background and Purpose: Reperfusion following transient global cerebral ischemia is characterized by an initial hyperemic phase, which precedes hypo perfusion. The pathogenesis of these flow derangements remains obscure. Our study investigates the dynamics of postischemic cerebral blood flow changes, with particular attention to the role of local neurons. Metho(Js: We assessed local cortical blood flow continuously by laser Doppler flowmetry to permit observation of any rapid flow changes after forebrain ischemia induced by four-vessel occlusion for 20 minutes in rats. To investigate the role of local cortical neurons in the regulation of any blood flow fluctuations, five rats received intracortical microinjections of a neurotoxin (10 p,g ibotenic acid in 1 p,1; 1.5-mm-depth parietal cortex) 24 hours before ischemia to induce selective and localized neuronal depletion in an area corresponding to the sampie volume of the laser Doppler probe (1 mm3 ). Local cerebral blood flow was measured within the injection site and at an adjacent control site. Results: Ischemia was followed by marked hyperemia (235 ±23% of control, n =7), followed by secondary hypoperfusion (45±3% of control, n=7). The transition from hyperemia to hypoperfusioo occurred not gradually but precipitously (maximal slope of flow decay: 66±6%/min; n=7). In ibotenic acid-injected rats, hyperemia was preserved at the injection site, but the sudden decline of blood flow was abolished (maximal slope of flow decay: 5±3%/min compared with 53±8%/min at the control site; n=5, p