TY - JOUR A1 - Adeyemo, O. M. A1 - Shapira, S. A1 - Tombaccini, D. A1 - Pollard, H. A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - A goldfish model for evaluation of the neurotoxicit of \(\omega\)-conotoxin GVIA and screening of monoclonal antibodies N2 - A Goldfish Model for Evaluation of the Neurotaxicity of \(\omega\)-Conotoxin GVI A and Screening of Monoclonal Antibodies. ADEYEMO, 0. M .. SHAPIRA, S., TOMBACCINI, D., POLLARD, H. 8 .• FEUERSTEIN, G .. AND SIREN, A-L. ( 1991 ). Toxicol. App/. Pharmaco/. 108, 489-496. The neurotoxicity of \(\omega\)-conotoxin (\(\omega\)-CgTx), a potent neuronal voltage-sensitive calcium channel blocker, was measured using a new bioassay. \(\omega\)-CgTx was administered intraperitoneally (ip) to goldfish weighing approximately 1.6 g, and dose-related changes were observed over a 2-hr period. \(\omega\)CgTx induced time- and dose-dependent abnormal swimming behavior (ASB) and mortality. The antitoxin activity of the antiborlies was investigated in vivo by either ( l) preincubation of the antibody with w-CgTx at 4°C overnight, or (2) pretreatment with antibody, 30 min before \(\omega\)CgTx injection in a 10:1 antibody/\(\omega\)-CgTx molar ratio. The LD50 dose of \(\omega\)-CgTx in goldfish was 5 nmol/kg ip, and preincubation of monoclonal antibody (50 nmol/kg ip) with \(\omega\)-CgTx (5 nmol/kg ip) significantly (p < 0.05) reduced mortality. ASB, and toxicity time. The antitoxin activity of the monoclonal antiborlies evidenced in the goldfish bioassay was further tested in the conscious rat. In the rat, the increases in mean arterial pressure and heart rate induced by \(\omega\)-CgTx (0.03 nmol/rat icv) were significantly (p < 0.02 and p < 0.0 l, respectively) attenuated by preincubation of the toxin with the antibody (0.3 nmol/rat). We conclude that the goldfish bioassay provides a simple. accurate, and inexpensive in vivo model for the study of the toxicity of \(\omega\)CgTx KW - Neurobiologie Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63087 ER - TY - JOUR A1 - Mrestani, Achmed A1 - Pauli, Martin A1 - Kollmannsberger, Philip A1 - Repp, Felix A1 - Kittel, Robert J. A1 - Eilers, Jens A1 - Doose, Sören A1 - Sauer, Markus A1 - Sirén, Anna-Leena A1 - Heckmann, Manfred A1 - Paul, Mila M. T1 - Active zone compaction correlates with presynaptic homeostatic potentiation JF - Cell Reports N2 - Neurotransmitter release is stabilized by homeostatic plasticity. Presynaptic homeostatic potentiation (PHP) operates on timescales ranging from minute- to life-long adaptations and likely involves reorganization of presynaptic active zones (AZs). At Drosophila melanogaster neuromuscular junctions, earlier work ascribed AZ enlargement by incorporating more Bruchpilot (Brp) scaffold protein a role in PHP. We use localization microscopy (direct stochastic optical reconstruction microscopy [dSTORM]) and hierarchical density-based spatial clustering of applications with noise (HDBSCAN) to study AZ plasticity during PHP at the synaptic mesoscale. We find compaction of individual AZs in acute philanthotoxin-induced and chronic genetically induced PHP but unchanged copy numbers of AZ proteins. Compaction even occurs at the level of Brp subclusters, which move toward AZ centers, and in Rab3 interacting molecule (RIM)-binding protein (RBP) subclusters. Furthermore, correlative confocal and dSTORM imaging reveals how AZ compaction in PHP translates into apparent increases in AZ area and Brp protein content, as implied earlier. KW - active zone KW - Bruchpilot KW - RIM-binding protein KW - compaction KW - homeostasis KW - presynaptic plasticity KW - super-resolution microscopy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-265497 VL - 37 IS - 1 ER - TY - JOUR A1 - McCarron, R. M. A1 - Wang, L. A1 - Sirén, Anna-Leena A1 - Spatz, M. A1 - Hallenbeck, J. M. T1 - Adhesion molecules on normotensive and hypertensive rat brain endothelial cells N2 - The intercellular adhesion of circulating leukocytes to vascular endothellum ls a prerequisite for leukocyte emigration from the blood to extravascular tlssues. This process is facllltated by adhesion molecules on the surfaces of both the vascular endothelial cells and the leukocytes. The experiments presented here demonstrate for the first time that the leukocyte adhesion receptor, intercellular adhesion molecule-1, is constitutively expressed on cultured cerebromicrovascular endothelial cell lines derived from both spontaneously hypertensive (SHR) rats and normotensive WistarKyoto (WKY) rats. Both cultures contained simliar numbers of cells constitutively expressing this adhesion molecule (31.4% and 29.6%, respectlvely). Adhesion molecule expression was up-regulated by interleukin-1 ß, tumor necrosis factor-a, interferon-y and lipopolysaccharide in a dose- and time-dependent manner. Both cultures exhibited similar maximum levels of adhesion molecule up-regulation to optimal concentrations of all three cytokines. However, SHR endothelial cells were moresensitive to all three cytokines; significantly higher levels of intercellular adhesion molecule-1 expresslon were seen on SHR as opposed to WKY endothelial cells cultured with sub-optimal cytokine concentrations. It was also observed that lipopolysaccharide up-regulated intercellular adhesion molecule-1 expression on SHR endothelial cells to a greater extent than on WKY endothelial cells. The findings that intercellular adhesion molecule-1 can be up-regulated to a greater degree on SHR endothelial cells may have important implications for in vivo perivascular leukocyte accumulation under hypertensive conditions. These observations indicate a possible mechanism by which hypertension may predispose to the development of disorders such as atherosclerosis and stroke. KW - Endothelzelle KW - Zell-Adhäsionsmolekül Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86819 ER - TY - JOUR A1 - Hopp, Sarah A1 - Nolte, Marc W. A1 - Stetter, Christian A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weissenberger, Christiane T1 - Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa JF - Journal of Neuroinflammation N2 - Background: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation. KW - factor XII KW - focal brain lesion KW - brain edema Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157490 VL - 14 IS - 39 ER - TY - JOUR A1 - Stetter, Christian A1 - Lopez-Caperuchipi, Simon A1 - Hopp-Krämer, Sarah A1 - Bieber, Michael A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weißenberger, Christiane T1 - Amelioration of cognitive and behavioral deficits after traumatic brain injury in coagulation factor XII deficient mice JF - International Journal of Molecular Sciences N2 - Based on recent findings that show that depletion of factor XII (FXII) leads to better posttraumatic neurological recovery, we studied the effect of FXII-deficiency on post-traumatic cognitive and behavioral outcomes in female and male mice. In agreement with our previous findings, neurological deficits on day 7 after weight-drop traumatic brain injury (TBI) were significantly reduced in FXII\(^{−/−}\) mice compared to wild type (WT) mice. Also, glycoprotein Ib (GPIb)-positive platelet aggregates were more frequent in brain microvasculature of WT than FXII\(^{−/−}\) mice 3 months after TBI. Six weeks after TBI, memory for novel object was significantly reduced in both female and male WT but not in FXII\(^{−/−}\) mice compared to sham-operated mice. In the setting of automated home-cage monitoring of socially housed mice in IntelliCages, female WT mice but not FXII\(^{−/−}\) mice showed decreased exploration and reacted negatively to reward extinction one month after TBI. Since neuroendocrine stress after TBI might contribute to trauma-induced cognitive dysfunction and negative emotional contrast reactions, we measured peripheral corticosterone levels and the ration of heart, lung, and spleen weight to bodyweight. Three months after TBI, plasma corticosterone levels were significantly suppressed in both female and male WT but not in FXII\(^{−/−}\) mice, while the relative heart weight increased in males but not in females of both phenotypes when compared to sham-operated mice. Our results indicate that FXII deficiency is associated with efficient post-traumatic behavioral and neuroendocrine recovery. KW - closed head injury KW - contact-kinin system KW - object recognition memory KW - IntelliCage KW - Crespi effect KW - stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-284959 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Stetter, Christian A1 - Hirschberg, Markus A1 - Nieswandt, Bernhard A1 - Ernestus, Ralf-Ingo A1 - Heckmann, Manfred T1 - An experimental protocol for in vivo imaging of neuronal structural plasticity with 2-photon microscopy in mice JF - Experimental & Translational Stroke Medicine N2 - Introduction Structural plasticity with synapse formation and elimination is a key component of memory capacity and may be critical for functional recovery after brain injury. Here we describe in detail two surgical techniques to create a cranial window in mice and show crucial points in the procedure for long-term repeated in vivo imaging of synaptic structural plasticity in the mouse neocortex. Methods Transgenic Thy1-YFP(H) mice expressing yellow-fluorescent protein (YFP) in layer-5 pyramidal neurons were prepared under anesthesia for in vivo imaging of dendritic spines in the parietal cortex either with an open-skull glass or thinned skull window. After a recovery period of 14 days, imaging sessions of 45–60 min in duration were started under fluothane anesthesia. To reduce respiration-induced movement artifacts, the skull was glued to a stainless steel plate fixed to metal base. The animals were set under a two-photon microscope with multifocal scanhead splitter (TriMScope, LaVision BioTec) and the Ti-sapphire laser was tuned to the optimal excitation wavelength for YFP (890 nm). Images were acquired by using a 20×, 0.95 NA, water-immersion objective (Olympus) in imaging depth of 100–200 μm from the pial surface. Two-dimensional projections of three-dimensional image stacks containing dendritic segments of interest were saved for further analysis. At the end of the last imaging session, the mice were decapitated and the brains removed for histological analysis. Results Repeated in vivo imaging of dendritic spines of the layer-5 pyramidal neurons was successful using both open-skull glass and thinned skull windows. Both window techniques were associated with low phototoxicity after repeated sessions of imaging. Conclusions Repeated imaging of dendritic spines in vivo allows monitoring of long-term structural dynamics of synapses. When carefully controlled for influence of repeated anesthesia and phototoxicity, the method will be suitable to study changes in synaptic structural plasticity after brain injury. KW - 2-photon microscopy KW - Fluorescence KW - In vivo imaging KW - Neurons KW - Cranial window KW - Mouse model Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96908 UR - http://www.etsmjournal.com/content/5/1/9 ER - TY - JOUR A1 - Albert-Weißenberger, Christiane A1 - Várrallyay, Csanád A1 - Raslan, Furat A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena T1 - An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice N2 - Traumatic brain injury (TBI) is a result of an outside force causing immediate mechanical disruption of brain tissue and delayed pathogenic events. In order to examine injury processes associated with TBI, a number of rodent models to induce brain trauma have been described. However, none of these models covers the entire spectrum of events that might occur in TBI. Here we provide a thorough methodological description of a straightforward closed head weight drop mouse model to assess brain injuries close to the clinical conditions of human TBI. KW - Medizin KW - closed head injury KW - traumatic brain injury KW - neurobehavioural deficits KW - astrocyte KW - microglia KW - neurons Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75368 ER - TY - JOUR A1 - Shuaib, A. A1 - Xu, K. A1 - Crain, B. A1 - Sirén, Anna-Leena A1 - Feuerstein, Giora A1 - Hallenbeck, J. A1 - Davis, JN T1 - Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining N2 - We used a sensitive silver degeneration staining method to study the effects of insertion of microdialysis probes in rat dorsal hippocampus and neocortex. Nine animals were sacrificed 24 h, 3 days or 7 days after implantation of dialysis tubing. Although mild neuronal cell death and small petechial hemorrhages were seen in elose proximity to the implantation site, the striking finding was the presence of degenerating axons both adjacent to the implantation site and in remote sites such as the corpus callosum and contralateral hippocampus. The observed changes could alter brain function near or remote from the implantation site and should be considered in analysis of dialysis experiments. KW - Neurophysiologie KW - Neurobiologie KW - In-vivo dia lysis KW - Silver degeneration staining KW - Axonal degeneration KW - Rat hippocampus Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47433 ER - TY - JOUR A1 - Lankiewicz, Leszek A1 - Bowers, Cyril Y. A1 - Reynolds, G. A. A1 - Labroo, Virender A1 - Cohen, Louis A. A1 - Vonhof, Stefan A1 - Sirén, Anna-Leena A1 - Spatola, Arno F. T1 - Biological Activities of Thionated Thyrotropin-Releasing Hormone Analogs JF - Biochemical and Biophysical Research Communications N2 - No abstract available. Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128152 VL - 184 IS - 1 ER - TY - JOUR A1 - Albert-Weissenberger, Christiane A1 - Stetter, Christian A1 - Meuth, Sven G. A1 - Göbel, Kerstin A1 - Bader, Michael A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - Blocking of Bradykinin Receptor B1 Protects from Focal Closed Head Injury in Mice by Reducing Axonal Damage and Astroglia Activation JF - Journal of Cerebral Blood Flow and Metabolism N2 - The two bradykinin receptors B1R and B2R are central components of the kallikrein–kinin system with different expression kinetics and binding characteristics. Activation of these receptors by kinins triggers inflammatory responses in the target organ and in most situations enhances tissue damage. We could recently show that blocking of B1R, but not B2R, protects from cortical cryolesion by reducing inflammation and edema formation. In the present study, we investigated the role of B1R and B2R in a closed head model of focal traumatic brain injury (TBI; weight drop). Increased expression of B1R in the injured hemispheres of wild-type mice was restricted to the later stages after brain trauma, i.e. day 7 (P<0.05), whereas no significant induction could be observed for the B2R (P>0.05). Mice lacking the B1R, but not the B2R, showed less functional deficits on day 3 (P<0.001) and day 7 (P<0.001) compared with controls. Pharmacological blocking of B1R in wild-type mice had similar effects. Reduced axonal injury and astroglia activation could be identified as underlying mechanisms, while inhibition of B1R had only little influence on the local inflammatory response in this model. Inhibition of B1R may become a novel strategy to counteract trauma-induced neurodegeneration. KW - R-715 KW - kinin receptors KW - closed head injury KW - β-APP KW - astrocytes KW - TNF-α Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125903 VL - 32 IS - 9 ER - TY - JOUR A1 - Albert-Weissenberger, Christiane A1 - Mencl, Stine A1 - Schuhmann, Michael K. A1 - Salur, Irmak A1 - Göb, Eva A1 - Langhauser, Friederike A1 - Hopp, Sarah A1 - Hennig, Nelli A1 - Meuth, Sven G. A1 - Nolte, Marc W. A1 - Sirén, Anna-Leena A1 - Kleinschnitz, Christoph T1 - C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation JF - Frontiers in Cellular Neuroscience N2 - Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings. KW - thrombosis KW - traumatic brain injury KW - C1-inhibitor KW - blood-brain barrier KW - contact-kinin system KW - edema KW - inflammation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119263 SN - 1662-5102 VL - 8 ER - TY - JOUR A1 - Adeyemo, M. A1 - Sirén, Anna-Leena T1 - Cardio-respiratory changes and mortality in the conscious rat induced by (+)- and (±)- anatoxin-a N2 - 0. M. ADEYEMO and A.-L. SIREN. Cardio-respiratory changes and mortality in the conscious rat induced by ( + )- and ( ± )-anatoxin-a. Toxicon 30, 899-905, 1992.-Anatoxin-a (AnTx-a) isapotent nicotinic cholinergic receptor agonist. The relative potencies of the ( + )-AnTx-a and the racemic mixture ( ± )-AnTxa were investigated in the conscious rat by comparing their effects on mean arterial blood pressure (BP), heart rate (HR), blood oxygen and carbon dioxide pressures (p02 and pC02, respective1y), acid-base balance (pH) and mortality. The present experiments show that while both forms of AnTx-a produce dose-dependent increases in BP and decreases in HR, ( + )-AnTx-a is about IO-fo1d morepotent than the optically inactive isomer. ( + )-AnTx-a was also 6-fo1d more potent than ( ± )-AnTx-a in produclog severe hypoxemia, and more than 4-fold as potent as the (±}-AnTx-a in producing significant hypercapnia accompanied with severe acidosis. The approximate median Iethai dose (Ln so) of ( + )-AnTx-a was about 5-fold less than that of ( ± )-AnTx-a. We conclude that ( + )-AnTx-a is more potent than the ( ± )-AnTx-a racemic mixture in causing detrimental cardio-respiratory changes and therefore increased mortality in the rat. KW - Neurobiologie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63027 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - Cardiovascular effects of anatoxin-a in the conscious rat N2 - Cardiovascular Effects of Anatoxin-A in the Conscious Rat. SJREN, A.-L., AND FEUERSTEIN, G. (1990). Toxicol. Appl. Pharmacol. 102,91-100. The effects ofanatoxin-A on mean arterial pressure (MAP), heart rate, cardiac index (CI), and blood flow (BF) in hindquarter (HQ), renal (R). and mesenteric (M) vascular beds were studied after intravenous (iv) and intracerebroventricular (icv) administration in the conscious rat. The pharmacological profile of anatoxin-A was further compared to nicotine administered iv and icv. MAP and heart rate were measured from femoral artery, CI by thermodilution method, and blood flow by Doppler velocimetry. Anatoxin-A and nicotine (30, 100 and 300 1-!g/kg iv) produced an increase in MAP with concomitant bradycardia. The highest doses increased Cl. MBF and RBF decreased due to a vasoconstriction in M and R vasculature. These effects were attenuated by the ganglion blocker chlorisondamine (5 mg/kg, iv). Anatoxin-A ( 100 1-!g/k~ iv) increased plasma epinephrine Ievels by 2- fold with virtually no effect on norepinephrine whereas nicotine ( 100 ~oLg/kg, iv) increased plasma epinephrine and norepinephrine by 20- to 30-fold. Central administration of anatoxin-A and nicotine (30-100 ,ug/kg icv) increased MAP with no effect on heart rate and produced M and R vasoconstriction. In summary, the present study demonstrates that anatoxin-A acts as a nicotinic cholinergic agonist in the c.onscious rat after both systemic and centrat administration. Anatoxin-A and nicotine produced pressor and reno-splanchnic vasoconstrictor responses and at high doses increased cardiac output. These effects were mediated by activation ofthe nicotinic receptors in the adrenal medulla and sympathetic ganglia. However, marked differences were found in the potency ofanatoxin-A versus nicotine to stimulate the sympathoadrenomedullary axis. KW - Neurobiologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63103 ER - TY - JOUR A1 - Feuerstein, G. A1 - Sirén, Anna-Leena T1 - Cardiovascular effects of enkephalins N2 - Enkephalins and their receptors are found in neurons and nerve terminals known to be involved in central cardiovascular control as well as the peripheral sympathetic and parasympathetic systems. Enkephalins and opioid receptors were also iden tified in the heart, kidneys, and blood vessels. The enkephalins interact with several specific receptors, of which p, 0, and K have been best characterized. Enkephalins administered to humans or animals produce cardiovascular effects which depend on the spedes, route of administration, anesthesia, and the selectivity for receptor subtype. While little information exists on the role of enkephalins in normal cardiovascular control, current data suggest that enkephalins might have a role in cardiovascular stress responses such os in shock and trauma. KW - Medizin Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49048 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, G. T1 - Cardiovascular effects of rat calcitonin gene-related peptide in the conscious rat KW - Neurobiologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63236 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Paakkari, I. T1 - Cardiovascular effects of TRH i.c.v. in conscious rats N2 - In addition to the endocrine effects, the thyrotropin releasing hormone (TRH) is known to induce dose-dependent increases in blood pressure and heart rate after intracerebroventricular (i.c.v.) administration in urethane-anaesthetised rats (1, 2). The a~ of the present study was to investigate whether TRH has similar effects in conscious rats of various strains i.e. spontaneously hypertensive rats (SHR), normotensive Wistar-Kyoto (WKY) and Wistar (NR) rats. KW - Medizin Y1 - 1984 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49071 ER - TY - JOUR A1 - Sirén, Anna-Leena T1 - Cardiovascular pharmacology of thyrotropin releasing hormone KW - Neurobiologie Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63214 ER - TY - JOUR A1 - Paakkari, I. A1 - Nurminen, M-L. A1 - Sirén, Anna-Leena T1 - Cardioventilatory effects of TRH in anesthetized rats: role of the brainstem N2 - Cardioventilator responses were studied in anaesthetized rats after injections of TRH into either the lateral (i.c.v. lat) or the fourth (i.c.v. IV) cerebral ventricles. TRH induced a morerapid hypertensive effect i.c.v. IV than i.c.v. lat. Blocking of the cerebral aqueduct abolished the hypertensive and tachypnoeic effects of TRH i.c.v. lat but not those of TRH i.c.v. IV. It is concluded that TRH increased blood pressure and ventilation rate via brain stem structures close to the fourtli ventricle. KW - Neurobiologie KW - TRH KW - Cardiovascular KW - Ventilation KW - Brain stem Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-63277 ER - TY - JOUR A1 - Sirén, Anna-Leena A1 - Feuerstein, Giera T1 - Central autonomic pharmacology of thyrotropin releasing hormone N2 - Thyrotropin releasing hormone (TRH, I-pyroglutamyl-l-histidyl-l-prolinamide) was the fIrst hypothalamic releasing SUbstance to be isolated, chemically characterized and synthetized /1/. The studies to date have revealed that the thyrotropin release from the pituitary gland is only one of the numerous actions of TRH. In addition to its endocrine actions (TSH and prolactin release) this tripeptide has central nervous system actions totally unrelated to its effects on the hypothalamo-pituitary axis. This review aims to summarize the studies on the central nervous system' actions of TRH with special emphasis on the autonomic pharmacology of this peptide. KW - Medizin Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-49051 ER - TY - JOUR A1 - Sirén, Anna-Leena T1 - Central cardiovascular and thermal effects of prostacyclin in rats N2 - Prostacyclin (PGI2) induced a dose-dependent decrease in blood pressure with slight increases in heart rate and body temperature, when administered at the doses of 0.1-100 ~g into the lateral cerebral ventricle (i.c.v.) of the urethane-anaesthetised rat. When the same doses were administered intravenously, both the blood pressure and heart rate decreased. Central pretreatment wib~ sodiurn meclofenamate (1 mg/rat i.c.v.) antagonised the central hypotensive effect of PGI2 but i.c.v. pretreatrnent of the rats with indomethacin (1 mg/rat) failed to affect the PGI 2-induced hypotension. Central pretreatment with two histamine H2-receptor antagonists, cimetidine (500 ~g/rat i.c.v.) or metiamide (488 ~g/rat i.c.v.), antagonised the blood pressure lowering effect of 0.1 ~g dose of PGI2 but failed to affect the hypotension induced by higher PGI2 doses. Therefore the main central hypotensive effect of PGI2 seems not to be associated with the stimulation of histamine H2 -receptors in the brain. The hypotensive effect of i.c.v. administered PGI2 appears to be due to an action upon the central nervous system rather than to a leakage into the peripheral circulation. This assurnption is supported by the fact that sodiurn meclofenamate i.c.v. antagonised the effect of PGI 2. In addition, the chronotropic response to i.c.v. PGI2 was opposite to that induced by intravenous administration. The results also suggest that there may be differences in the mode of action between sodiurn meclofenamate and indomethacin. KW - Prostaglandine Y1 - 1981 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-47943 ER -