TY - JOUR A1 - Hopp, Sarah A1 - Nolte, Marc W. A1 - Stetter, Christian A1 - Kleinschnitz, Christoph A1 - Sirén, Anna-Leena A1 - Albert-Weissenberger, Christiane T1 - Alleviation of secondary brain injury, posttraumatic inflammation, and brain edema formation by inhibition of factor XIIa JF - Journal of Neuroinflammation N2 - Background: Traumatic brain injury (TBI) is a devastating neurological condition and a frequent cause of permanent disability. Posttraumatic inflammation and brain edema formation, two pathological key events contributing to secondary brain injury, are mediated by the contact-kinin system. Activation of this pathway in the plasma is triggered by activated factor XII. Hence, we set out to study in detail the influence of activated factor XII on the abovementioned pathophysiological features of TBI. Methods: Using a cortical cryogenic lesion model in mice, we investigated the impact of genetic deficiency of factor XII and inhibition of activated factor XII with a single bolus injection of recombinant human albumin-fused Infestin-4 on the release of bradykinin, the brain lesion size, and contact-kinin system-dependent pathological events. We determined protein levels of bradykinin, intracellular adhesion molecule-1, CC-chemokine ligand 2, and interleukin-1β by enzyme-linked immunosorbent assays and mRNA levels of genes related to inflammation by quantitative real-time PCR. Brain lesion size was determined by tetrazolium chloride staining. Furthermore, protein levels of the tight junction protein occludin, integrity of the blood-brain barrier, and brain water content were assessed by Western blot analysis, extravasated Evans Blue dye, and the wet weight-dry weight method, respectively. Infiltration of neutrophils and microglia/activated macrophages into the injured brain lesions was quantified by immunohistological stainings. Results: We show that both genetic deficiency of factor XII and inhibition of activated factor XII in mice diminish brain injury-induced bradykinin release by the contact-kinin system and minimize brain lesion size, blood-brain barrier leakage, brain edema formation, and inflammation in our brain injury model. Conclusions: Stimulation of bradykinin release by activated factor XII probably plays a prominent role in expanding secondary brain damage by promoting brain edema formation and inflammation. Pharmacological blocking of activated factor XII could be a useful therapeutic principle in the treatment of TBI-associated pathologic processes by alleviating posttraumatic inflammation and brain edema formation. KW - factor XII KW - focal brain lesion KW - brain edema Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157490 VL - 14 IS - 39 ER - TY - JOUR A1 - Israel, Ina A1 - Ohsiek, Andrea A1 - Al-Momani, Ehab A1 - Albert-Weissenberger, Christiane A1 - Stetter, Christian A1 - Mencl, Stine A1 - Buck, Andreas K. A1 - Kleinschnitz, Christoph A1 - Samnick, Samuel A1 - Sirén, Anna-Leena T1 - Combined [\(^{18}\)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice JF - Journal of Neuroinflammation N2 - Background Traumatic brain injury (TBI) is a major cause of death and disability. Neuroinflammation contributes to acute damage after TBI and modulates long-term evolution of degenerative and regenerative responses to injury. The aim of the present study was to evaluate the relationship of microglia activation to trauma severity, brain energy metabolism, and cellular reactions to injury in a mouse closed head injury model using combined in vivo PET imaging, ex vivo autoradiography, and immunohistochemistry. Methods A weight-drop closed head injury model was used to produce a mixed diffuse and focal TBI or a purely diffuse mild TBI (mTBI) in C57BL6 mice. Lesion severity was determined by evaluating histological damage and functional outcome using a standardized neuroscore (NSS), gliosis, and axonal injury by immunohistochemistry. Repeated intra-individual in vivo μPET imaging with the specific 18-kDa translocator protein (TSPO) radioligand [\(^{18}\)F]DPA-714 was performed on day 1, 7, and 16 and [\(^{18}\)F]FDG-μPET imaging for energy metabolism on days 2–5 after trauma using freshly synthesized radiotracers. Immediately after [\(^{18}\)F]DPA-714-μPET imaging on days 7 and 16, cellular identity of the [\(^{18}\)F]DPA-714 uptake was confirmed by exposing freshly cut cryosections to film autoradiography and successive immunostaining with antibodies against the microglia/macrophage marker IBA-1. Results Functional outcome correlated with focal brain lesions, gliosis, and axonal injury. [\(^{18}\)F]DPA-714-μPET showed increased radiotracer uptake in focal brain lesions on days 7 and 16 after TBI and correlated with reduced cerebral [\(^{18}\)F]FDG uptake on days 2–5, with functional outcome and number of IBA-1 positive cells on day 7. In autoradiography, [\(^{18}\)F]DPA-714 uptake co-localized with areas of IBA1-positive staining and correlated strongly with both NSS and the number of IBA1-positive cells, gliosis, and axonal injury. After mTBI, numbers of IBA-1 positive cells with microglial morphology increased in both brain hemispheres; however, uptake of [\(^{18}\)F]DPA-714 was not increased in autoradiography or in μPET imaging. Conclusions [\(^{18}\)F]DPA-714 uptake in μPET/autoradiography correlates with trauma severity, brain metabolic deficits, and microglia activation after closed head TBI. KW - neuroinflammation KW - TBI KW - immunohistochemistry KW - weight drop KW - PET KW - diffuse KW - focal KW - TSPO KW - autoradiography KW - IBA-1 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146606 VL - 13 IS - 140 ER -