TY - JOUR A1 - Wagenbrenner, Mike A1 - Poker, Konrad A1 - Heinz, Tizian A1 - Herrmann, Marietta A1 - Horas, Konstantin A1 - Ebert, Regina A1 - Mayer-Wagner, Susanne A1 - Holzapfel, Boris M. A1 - Rudert, Maximilian A1 - Steinert, Andre F. A1 - Weißenberger, Manuel T1 - Mesenchymal stromal cells (MSCs) isolated from various tissues of the human arthritic knee joint possess similar multipotent differentiation potential JF - Applied Sciences N2 - (1) Background: The mesenchymal stromal cells (MSCs) of different tissue origins are applied in cell-based chondrogenic regeneration. However, there is a lack of comparability determining the most suitable cell source for the tissue engineering (TE) of cartilage. The purpose of this study was to compare the in vitro chondrogenic potential of MSC-like cells from different tissue sources (bone marrow, meniscus, anterior cruciate ligament, synovial membrane, and the infrapatellar fat pad removed during total knee arthroplasty (TKA)) and define which cell source is best suited for cartilage regeneration. (2) Methods: MSC-like cells were isolated from five donors and expanded using adherent monolayer cultures. Differentiation was induced by culture media containing specific growth factors. Transforming growth factor (TGF)-ß1 was used as the growth factor for chondrogenic differentiation. Osteogenesis and adipogenesis were induced in monolayer cultures for 27 days, while pellet cell cultures were used for chondrogenesis for 21 days. Control cultures were maintained under the same conditions. After, the differentiation period samples were analyzed, using histological and immunohistochemical staining, as well as molecularbiological analysis by RT-PCR, to assess the expression of specific marker genes. (3) Results: Plastic-adherent growth and in vitro trilineage differentiation capacity of all isolated cells were proven. Flow cytometry revealed the clear co-expression of surface markers CD44, CD73, CD90, and CD105 on all isolated cells. Adipogenesis was validated through the formation of lipid droplets, while osteogenesis was proven by the formation of calcium deposits within differentiated cell cultures. The formation of proteoglycans was observed during chondrogenesis in pellet cultures, with immunohistochemical staining revealing an increased relative gene expression of collagen type II. RT-PCR proved an elevated expression of specific marker genes after successful differentiation, with no significant differences regarding different cell source of native tissue. (4) Conclusions: Irrespective of the cell source of native tissue, all MSC-like cells showed multipotent differentiation potential in vitro. The multipotent differentiation capacity did not differ significantly, and chondrogenic differentiation was proven in all pellet cultures. Therefore, cell suitability for cell-based cartilage therapies and tissue engineering is given for various tissue origins that are routinely removed during total knee arthroplasty (TKA). This study might provide essential information for the clinical tool of cell harvesting, leading to more flexibility in cell availability. KW - knee joint KW - MSCs KW - cellular origin KW - cartilage regeneration KW - tissue engineering KW - cell-based therapies KW - osteoarthritis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262334 SN - 2076-3417 VL - 12 IS - 4 ER - TY - JOUR A1 - Steinert, Andre F. A1 - Schröder, Lennart A1 - Sefrin, Lukas A1 - Janßen, Björn A1 - Arnholdt, Jörg A1 - Rudert, Maximilian T1 - The impact of total knee replacement with a customized cruciate-retaining implant design on patient-reported and functional outcomes JF - Journal of Personalized Medicine N2 - Purpose: To treat patients with tricompartimental knee osteoarthritis (OA), a customized cruciate-retaining total knee arthroplasty (CCR-TKA) system can be used, including both individualized instrumentation and implants. The objective of this monocentric cohort study was to analyze patient-reported and functional outcomes in a series of patients implanted with the second generation of this customized implant. Methods: At our arthroplasty center, we prospectively recruited a cohort of patients with tricompartmental gonarthrosis to be treated with total knee replacement (TKA) using a customized cruciate-retaining (CCR) implant design. Inclusion criteria for patients comprised the presence of intact posterior cruciate and collateral ligaments and a knee deformity that was restricted to <15° varus, valgus, or flexion contracture. Patients were assessed for their range of motion (ROM), Knee Society Score (KSS), Western Ontario and McMaster University osteoarthritis index (WOMAC), and short form (SF)-12 physical and mental scores, preoperatively, at 3 and 6 months, as well as at 1, 2, 3, and 5 years of follow-up (FU) postoperatively. Results: The average age of the patient population was 64 years (range: 40–81), the average BMI was 31 (range: 23–42), and in total, 28 female and 45 male patients were included. Implant survivorship was 97.5% (one septic loosening) at an average follow-up of 2.5 years. The KSS knee and function scores improved significantly (p < 0.001) from, respectively, 41 and 53 at the pre-operative visit, to 92 and 86, respectively, at the 5-year post-operative time point. The SF-12 Physical and Mental scores significantly (p < 0.001) improved from the pre-operative values of 28 and 50, to 50 and 53 at the 5-year FU, respectively. Patients experienced significant improvements in their overall knee range of motion, from 106° at the preoperative visit to 122°, on average, 5 years postoperatively. The total WOMAC score significantly (p < 0.001) improved from 49.1 preoperatively to 11.4 postoperatively at 5-year FU. Conclusions: Although there was no comparison to other implants within this study, patients reported high overall satisfaction and improvement in functional outcomes within the first year from surgery, which continued over the following years. These mid-term results are excellent compared with those reported in the current literature. Comparative long-term studies with this device are needed. Level of evidence 3b (individual case–control study). KW - patient-specific KW - custom-made implant KW - total knee arthroplasty KW - TKA KW - knee replacement KW - tricompartmental knee osteoarthritis KW - iTotal Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312746 SN - 2075-4426 VL - 12 IS - 2 ER - TY - JOUR A1 - von Hertzberg-Boelch, Sebastian Philipp A1 - Luedemann, Martin A1 - Rudert, Maximilian A1 - Steinert, Andre F. T1 - PMMA bone cement: antibiotic elution and mechanical properties in the context of clinical use JF - Biomedicines N2 - This literature review discusses the use of antibiotic loaded polymethylmethacrylate bone cements in arthroplasty. The clinically relevant differences that have to be considered when antibiotic loaded bone cements (ALBC) are used either for long-term implant fixation or as spacers for the treatment of periprosthetic joint infections are outlined. In this context, in vitro findings for antibiotic elution and material properties are summarized and transferred to clinical use. KW - spacer KW - bone cement KW - PMMA KW - polymethylmethacrylate KW - periprosthetic infection KW - antibiotic elution Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281708 SN - 2227-9059 VL - 10 IS - 8 ER - TY - JOUR A1 - Wagenbrenner, Mike A1 - Heinz, Tizian A1 - Horas, Konstantin A1 - Jakuscheit, Axel A1 - Arnholdt, Jörg A1 - Hermann, Marietta A1 - Rudert, Maximilian A1 - Holzapfel, Boris M. A1 - Steinert, Andre F. A1 - Weißenberger, Manuel T1 - The human arthritic hip joint is a source of mesenchymal stromal cells (MSCs) with extensive multipotent differentiation potential JF - BMC Musculoskeletal Disorders N2 - Background While multiple in vitro studies examined mesenchymal stromal cells (MSCs) derived from bone marrow or hyaline cartilage, there is little to no data about the presence of MSCs in the joint capsule or the ligamentum capitis femoris (LCF) of the hip joint. Therefore, this in vitro study examined the presence and differentiation potential of MSCs isolated from the bone marrow, arthritic hyaline cartilage, the LCF and full-thickness samples of the anterior joint capsule of the hip joint. Methods MSCs were isolated and multiplied in adherent monolayer cell cultures. Osteogenesis and adipogenesis were induced in monolayer cell cultures for 21 days using a differentiation medium containing specific growth factors, while chondrogenesis in the presence of TGF-ss1 was performed using pellet-culture for 27 days. Control cultures were maintained for comparison over the same duration of time. The differentiation process was analyzed using histological and immunohistochemical stainings as well as semiquantitative RT-PCR for measuring the mean expression levels of tissue-specific genes. Results This in vitro research showed that the isolated cells from all four donor tissues grew plastic-adherent and showed similar adipogenic and osteogenic differentiation capacity as proven by the histological detection of lipid droplets or deposits of extracellular calcium and collagen type I. After 27 days of chondrogenesis proteoglycans accumulated in the differentiated MSC-pellets from all donor tissues. Immunohistochemical staining revealed vast amounts of collagen type II in all differentiated MSC-pellets, except for those from the LCF. Interestingly, all differentiated MSCs still showed a clear increase in mean expression of adipogenic, osteogenic and chondrogenic marker genes. In addition, the examination of an exemplary selected donor sample revealed that cells from all four donor tissues were clearly positive for the surface markers CD44, CD73, CD90 and CD105 by flow cytometric analysis. Conclusions This study proved the presence of MSC-like cells in all four examined donor tissues of the hip joint. No significant differences were observed during osteogenic or adipogenic differentiation depending on the source of MSCs used. Further research is necessary to fully determine the tripotent differentiation potential of cells isolated from the LCF and capsule tissue of the hip joint. KW - Hip joint KW - Osteoarthritis KW - MSCs KW - Cartilage regeneration KW - Tissue engineering KW - Ligamentum capitis femoris KW - Joint capsule KW - Bone marrow Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229497 VL - 21 IS - 1 ER - TY - JOUR A1 - Arnholdt, Jörg A1 - Kamawal, Yama A1 - Horas, Konstantin A1 - Holzapfel, Boris M. A1 - Gilbert, Fabian A1 - Ripp, Axel A1 - Rudert, Maximilian A1 - Steinert, Andre F. T1 - Accurate implant fit and leg alignment after cruciate-retaining patient-specific total knee arthroplasty JF - BMC Musculoskeletal Disorders N2 - Background For improved outcomes in total knee arthroplasty (TKA) correct implant fitting and positioning are crucial. In order to facilitate a best possible implant fitting and positioning patient-specific systems have been developed. However, whether or not these systems allow for better implant fitting and positioning has yet to be elucidated. For this reason, the aim was to analyse the novel patient-specific cruciate retaining knee replacement system iTotal (TM) CR G2 that utilizes custom-made implants and instruments for its ability to facilitate accurate implant fitting and positioning including correction of the hip-knee-ankle angle (HKA). Methods We assessed radiographic results of 106 patients who were treated with the second generation of a patient-specific cruciate retaining knee arthroplasty using iTotal\(^{TM}\) CR G2 (ConforMIS Inc.) for tricompartmental knee osteoarthritis (OA) using custom-made implants and instruments. The implant fit and positioning as well as the correction of the mechanical axis (hip-knee-ankle angle, HKA) and restoration of the joint line were determined using pre- and postoperative radiographic analyses. Results On average, HKA was corrected from 174.4 degrees +/- 4.6 degrees preoperatively to 178.8 degrees +/- 2.2 degrees postoperatively and the coronal femoro-tibial angle was adjusted on average 4.4 degrees. The measured preoperative tibial slope was 5.3 degrees +/- 2.2 degrees (mean +/- SD) and the average postoperative tibial slope was 4.7 degrees +/- 1.1 degrees on lateral views. The joint line was well preserved with an average modified Insall-Salvati index of 1.66 +/- 0.16 pre- and 1.67 +/- 0.16 postoperatively. The overall accuracy of fit of implant components was decent with a measured medial overhang of more than 1 mm (1.33 mm +/- 0.32 mm) in 4 cases only. Further, a lateral overhang of more than 1 mm (1.8 mm +/- 0.63) (measured in the anterior-posterior radiographs) was observed in 11 cases, with none of the 106 patients showing femoral notching. Conclusion The patient-specific iTotal\(^{TM}\) CR G2 total knee replacement system facilitated a proper fitting and positioning of the implant components. Moreover, a good restoration of the leg axis towards neutral alignment was achieved as planned. Nonetheless, further clinical follow-up studies are necessary to validate our findings and to determine the long-term impact of using this patient- specific system. KW - total knee replacement KW - knee axis KW - patient-specific knee arthroplasty KW - knee osteoarthritis KW - implant positioning Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230012 VL - 21 ER - TY - JOUR A1 - Weissenberger, Manuel A1 - Weissenberger, Manuela H. A1 - Wagenbrenner, Mike A1 - Heinz, Tizian A1 - Reboredo, Jenny A1 - Holzapfel, Boris M. A1 - Rudert, Maximilian A1 - Groll, Jürgen A1 - Evans, Christopher H. A1 - Steinert, Andre F. T1 - Different types of cartilage neotissue fabricated from collagen hydrogels and mesenchymal stromal cells via SOX9, TGFB1 or BMP2 gene transfer JF - PLoS One N2 - Objective As native cartilage consists of different phenotypical zones, this study aims to fabricate different types of neocartilage constructs from collagen hydrogels and human mesenchymal stromal cells (MSCs) genetically modified to express different chondrogenic factors. Design Human MSCs derived from bone-marrow of osteoarthritis (OA) hips were genetically modified using adenoviral vectors encoding sex-determining region Y-type high-mobility-group-box (SOX)9,transforming growth factor beta (TGFB) 1or bone morphogenetic protein (BMP) 2cDNA, placed in type I collagen hydrogels and maintained in serum-free chondrogenic media for three weeks. Control constructs contained unmodified MSCs or MSCs expressing GFP. The respective constructs were analyzed histologically, immunohistochemically, biochemically, and by qRT-PCR for chondrogenesis and hypertrophy. Results Chondrogenesis in MSCs was consistently and strongly induced in collagen I hydrogels by the transgenesSOX9,TGFB1andBMP2as evidenced by positive staining for proteoglycans, chondroitin-4-sulfate (CS4) and collagen (COL) type II, increased levels of glycosaminoglycan (GAG) synthesis, and expression of mRNAs associated with chondrogenesis. The control groups were entirely non-chondrogenic. The levels of hypertrophy, as judged by expression of alkaline phosphatase (ALP) and COL X on both the protein and mRNA levels revealed different stages of hypertrophy within the chondrogenic groups (BMP2>TGFB1>SOX9). Conclusions Different types of neocartilage with varying levels of hypertrophy could be generated from human MSCs in collagen hydrogels by transfer of genes encoding the chondrogenic factorsSOX9,TGFB1andBMP2. This technology may be harnessed for regeneration of specific zones of native cartilage upon damage. KW - stem cells KW - in vitro KW - chondrogenic differentiation KW - repair KW - chondrocytes KW - transplantation KW - stimulation KW - scaffolds KW - defects KW - therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230494 VL - 15 IS - 8 ER - TY - JOUR A1 - Schmalzl, Jonas A1 - Plumhoff, Piet A1 - Gilbert, Fabian A1 - Gohlke, Frank A1 - Konrads, Christian A1 - Brunner, Ulrich A1 - Jakob, Franz A1 - Ebert, Regina A1 - Steinert, Andre F. T1 - Tendon-derived stem cells from the long head of the biceps tendon JF - Bone & Joint Research N2 - Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. KW - biceps tendon KW - tendon-derived stem cell KW - mesenchymal stem cell KW - tissue engineering KW - shoulder Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200370 VL - 8 IS - 9 ER - TY - JOUR A1 - Arnholdt, Jörg A1 - Gilbert, Fabian A1 - Blank, Marc A1 - Papazoglou, Jannis A1 - Rudert, Maximilian A1 - Nöth, Ulrich A1 - Steinert, Andre F. T1 - The Mayo conservative hip: complication analysis and management of the first 41 cases performed at a University level 1 department JF - BMC Muskoskeletal Disorders N2 - Background: To prevent bone loss in hip arthroplasty, several short stem systems have been developed, including the Mayo conservative hip system. While there is a plethora of data confirming inherent advantages of these systems, only little is known about potential complications, especially when surgeons start to use these systems. Methods: In this study, we present a retrospective analysis of the patients’ outcome, complications and the complication management of the first 41 Mayo conservative hips performed in 37 patients. For this reason, functional scores, radiographic analyses, peri- and postoperative complications were assessed at an average follow-up of 35 months. Results: The overall HHS improved from 61.2 pre-operatively to 85.6 post-operatively. The German Extra Short Musculoskeletal Function Assessment Questionnaire (XSFMA-D) improved from 30.3 pre-operatively to 12.2 post-operatively. The most common complication was an intraoperative non-displaced fracture of the proximal femur observed in 5 cases (12.1%). Diabetes, higher BMI and older ages were shown to be risk factors for these intra-operative periprosthetic fractures (p < 0.01). Radiographic analysis revealed a good offset reconstruction in all cases. Conclusion: In our series, a high complication rate with 12.1% of non-displaced proximal femoral fractures was observed using the Mayo conservative hip. This may be attributed to the flat learning curve of the system or the inherent patient characteristics of the presented cohort." KW - total hip arthroplasty KW - short hip stem KW - mayo stem KW - minimal invasive surgery Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157812 VL - 18 IS - 250 ER - TY - JOUR A1 - Armbruster, Nicole A1 - Krieg, Jennifer A1 - Weißenberger, Manuel A1 - Scheller, Carsten A1 - Steinert, Andre F. T1 - Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer JF - Frontiers in Pharmacology N2 - Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair. KW - mesenchymal stem cell KW - chondrogenesis KW - pellet culture KW - foamy virus KW - virus vectors KW - IL1RA KW - interleukin 1 receptor antagonist KW - arthritis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170919 VL - 8 IS - 255 ER - TY - JOUR A1 - Kamawal, Yama A1 - Steinert, Andre F A1 - Holzapfel, Boris M A1 - Rudert, Maximilian A1 - Barthel, Thomas T1 - Case report - calcification of the medial collateral ligament of the knee with simultaneous calcifying tendinitis of the rotator cuff JF - BMC Muscoskeletal Disorders N2 - Calcification of the medial collateral ligament (MCL) of the knee is a very rare disease. We report on a case of a patient with a calcifying lesion within the MCL and simultaneous calcifying tendinitis of the rotator cuff in both shoulders. Case presentation: Calcification of the MCL was diagnosed both via x-ray and magnetic resonance imaging (MRI) and was successfully treated surgically. Calcifying tendinitis of the rotator cuff was successfully treated applying conservative methods. Conclusion: This is the first case report of a patient suffering from both a calcifying lesion within the medial collateral ligament and calcifying tendinitis of the rotator cuff in both shoulders. Clinical symptoms, radio-morphological characteristics and macroscopic features were very similar and therefore it can be postulated that the underlying pathophysiology is the same in both diseases. Our experience suggests that magnetic resonance imaging and x-ray are invaluable tools for the diagnosis of this inflammatory calcifying disease of the ligament, and that surgical repair provides a good outcome if conservative treatment fails. It seems that calcification of the MCL is more likely to require surgery than calcifying tendinitis of the rotator cuff. However, the exact reason for this remains unclear to date. KW - case report KW - calcification KW - medical collateral ligament KW - knee rotator cuff KW - open surgical repair Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147669 VL - 17 IS - 283 ER -