TY - JOUR A1 - Frank, Benjamin A1 - Marcu, Ana A1 - de Oliveira Almeida Petersen, Antonio Luis A1 - Weber, Heike A1 - Stigloher, Christian A1 - Mottram, Jeremy C. A1 - Scholz, Claus Jürgen A1 - Schurigt, Uta T1 - Autophagic digestion of Leishmania major by host macrophages is associated with differential expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210 JF - Parasites & Vectors N2 - Background Autophagy participates in innate immunity by eliminating intracellular pathogens. Consequently, numerous microorganisms have developed strategies to impair the autophagic machinery in phagocytes. In the current study, interactions between Leishmania major (L. m.) and the autophagic machinery of bone marrow-derived macrophages (BMDM) were analyzed. Methods BMDM were generated from BALB/c mice, and the cells were infected with L. m. promastigotes. Transmission electron microscopy (TEM) and electron tomography were used to investigate the ultrastructure of BMDM and the intracellular parasites. Affymetrix® chip analyses were conducted to identify autophagy-related messenger RNAs (mRNAs) and microRNAs (miRNAs). The protein expression levels of autophagy related 5 (ATG5), BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), cathepsin E (CTSE), mechanistic target of rapamycin (MTOR), microtubule-associated proteins 1A/1B light chain 3B (LC3B), and ubiquitin (UB) were investigated through western blot analyses. BMDM were transfected with specific small interfering RNAs (siRNAs) against autophagy-related genes and with mimics or inhibitors of autophagy-associated miRNAs. The infection rates of BMDM were determined by light microscopy after a parasite-specific staining. Results The experiments demonstrated autophagy induction in BMDM after in vitro infection with L. m.. The results suggested a putative MTOR phosphorylation-dependent counteracting mechanism in the early infection phase and indicated that intracellular amastigotes were cleared by autophagy in BMDM in the late infection phase. Transcriptomic analyses and specific downregulation of protein expression with siRNAs suggested there is an association between the infection-specific over expression of BNIP3, as well as CTSE, and the autophagic activity of BMDM. Transfection with mimics of mmu-miR-101c and mmu-miR-129-5p, as well as with an inhibitor of mmu-miR-210-5p, demonstrated direct effects of the respective miRNAs on parasite clearance in L. m.-infected BMDM. Furthermore, Affymetrix® chip analyses revealed a complex autophagy-related RNA network consisting of differentially expressed mRNAs and miRNAs in BMDM, which indicates high glycolytic and inflammatory activity in the host macrophages. Conclusions Autophagy in L. m.-infected host macrophages is a highly regulated cellular process at both the RNA level and the protein level. Autophagy has the potential to clear parasites from the host. The results obtained from experiments with murine host macrophages could be translated in the future to develop innovative and therapeutic antileishmanial strategies for human patients. KW - autophagy KW - BNIP3 KW - CTSE KW - electron tomography KW - leishmania major KW - macrophages KW - miRNAs KW - MTOR KW - siRNAs KW - transmission electron microscopy Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124997 VL - 8 IS - 404 ER - TY - JOUR A1 - Zhan, Hong A1 - Stanciauskas, Ramunas A1 - Stigloher, Christian A1 - Dizon, Kevin K. A1 - Jospin, Maelle A1 - Bessereau, Jean-Luis A1 - Pinaud, Fabien T1 - In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans JF - Nature Communications N2 - Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca(2+) channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121125 VL - 5 IS - 4974 ER - TY - JOUR A1 - Rozycka, Miroslawa A1 - Wojtas, Magdalena A1 - Jakob, Michal A1 - Stigloher, Christian A1 - Grzeszkowiak, Mikolaj A1 - Mazur, Maciej A1 - Ozyhar, Andrzej T1 - Intrinsically Disordered and Pliable Starmaker-Like Protein from Medaka (Oryzias latipes) Controls the Formation of Calcium Carbonate Crystals JF - PLOS ONE N2 - Fish otoliths, biominerals composed of calcium carbonate with a small amount of organic matrix, are involved in the functioning of the inner ear. Starmaker (Stm) from zebrafish (Danio rerio) was the first protein found to be capable of controlling the formation of otoliths. Recently, a gene was identified encoding the Starmaker-like (Stm-l) protein from medaka (Oryzias latipes), a putative homologue of Stm and human dentine sialophosphoprotein. Although there is no sequence similarity between Stm-l and Stm, Stm-l was suggested to be involved in the biomineralization of otoliths, as had been observed for Stm even before. The molecular properties and functioning of Stm-l as a putative regulatory protein in otolith formation have not been characterized yet. A comprehensive biochemical and biophysical analysis of recombinant Stm-l, along with in silico examinations, indicated that Stm-l exhibits properties of a coil-like intrinsically disordered protein. Stm-l possesses an elongated and pliable structure that is able to adopt a more ordered and rigid conformation under the influence of different factors. An in vitro assay of the biomineralization activity of Stm-l indicated that Stm-l affected the size, shape and number of calcium carbonate crystals. The functional significance of intrinsically disordered properties of Stm-l and the possible role of this protein in controlling the formation of calcium carbonate crystals is discussed. KW - circular-dichroism KW - unstructured proteins KW - olyelectrolyte domains KW - modulating KW - biominarlization proteins KW - nacreous layer formation KW - alpha-helical structure KW - dye stains-all KW - polyelectrolyte domains KW - phosphorylation sites KW - procambarus-clarkii KW - secondary structure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114251 SN - 1932-6203 VL - 9 IS - 12 ER -