TY - JOUR A1 - Sturm, Julia B. A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Chen, Nanhei G. A1 - Yu, Yong A. A1 - Zhang, Quian A1 - Donat, Ulrike A1 - Reiss, Cora A1 - Gambaryan, Stepan A1 - Krohne, Georg A1 - Stritzker, Jochen A1 - Szalay, Aladar A. T1 - Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy N2 - Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects. KW - Biologie KW - vaccinia virus KW - cancer KW - cytokine KW - hyper-IL-6 KW - oncolysis KW - chemotherapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75224 ER - TY - JOUR A1 - Donat, Ulrike A1 - Rother, Juliane A1 - Schäfer, Simon A1 - Hess, Michael A1 - Härtl, Barbara A1 - Kober, Christina A1 - Langbein-Laugwitz, Johanna A1 - Stritzker, Jochen A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Weibel, Stephanie A1 - Szalay, Alandar A. T1 - Characterization of Metastasis Formation and Virotherapy in the Human C33A Cervical Cancer Model JF - PLoS ONE N2 - More than 90% of cancer mortalities are due to cancer that has metastasized. Therefore, it is crucial to intensify research on metastasis formation and therapy. Here, we describe for the first time the metastasizing ability of the human cervical cancer cell line C33A in athymic nude mice after subcutaneous implantation of tumor cells. In this model, we demonstrated a steady progression of lumbar and renal lymph node metastases during tumor development. Besides predominantly occurring lymphatic metastases, we visualized the formation of hematogenous metastases utilizing red fluorescent protein (RFP) expressing C33A-RFP cells. RFP positive cancer cells were found migrating in blood vessels and forming micrometastases in lungs of tumor-bearing mice. Next, we set out to analyze the influence of oncolytic virotherapy in the C33A-RFP model and demonstrated an efficient virus-mediated reduction of tumor size and metastatic burden. These results suggest the C33A-RFP cervical cancer model as a new platform to analyze cancer metastases as well as to test novel treatment options to combat metastases. KW - metastasis KW - renal cancer KW - oncolytic viruses KW - lymph nodes KW - kidneys KW - lung and intrathoracic tumors KW - secondary lung tumors KW - cancer treatment Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119674 SN - 1932-6203 VL - 9 IS - 6 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Josupeit, Rafael A1 - Rudolph, Stephan A1 - Ehrig, Klaas A1 - Donat, Ulrike A1 - Weibel, Stephanie A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Heisig, Martin A1 - Thamm, Douglas A1 - Stritzker, Jochen A1 - MacNeill, Amy A1 - Szalay, Aladar A. T1 - Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS. KW - breast-tumors KW - animal-model KW - nude-mice KW - cell-line KW - in-vitro KW - glv-1h68 KW - cancer KW - virotherapy KW - dogs KW - neutrophils Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129998 VL - 7 IS - 5 ER -