TY - JOUR A1 - Kaiser, Dennis A1 - Lesch, Veronika A1 - Rothe, Julian A1 - Strohmeier, Michael A1 - Spieß, Florian A1 - Krupitzer, Christian A1 - Montenegro, Sergio A1 - Kounev, Samuel T1 - Towards Self-Aware Multirotor Formations JF - Computers N2 - In the present day, unmanned aerial vehicles become seemingly more popular every year, but, without regulation of the increasing number of these vehicles, the air space could become chaotic and uncontrollable. In this work, a framework is proposed to combine self-aware computing with multirotor formations to address this problem. The self-awareness is envisioned to improve the dynamic behavior of multirotors. The formation scheme that is implemented is called platooning, which arranges vehicles in a string behind the lead vehicle and is proposed to bring order into chaotic air space. Since multirotors define a general category of unmanned aerial vehicles, the focus of this thesis are quadcopters, platforms with four rotors. A modification for the LRA-M self-awareness loop is proposed and named Platooning Awareness. The implemented framework is able to offer two flight modes that enable waypoint following and the self-awareness module to find a path through scenarios, where obstacles are present on the way, onto a goal position. The evaluation of this work shows that the proposed framework is able to use self-awareness to learn about its environment, avoid obstacles, and can successfully move a platoon of drones through multiple scenarios. KW - self-aware computing KW - unmanned aerial vehicles KW - multirotors KW - quadcopters KW - intelligent transportation systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200572 SN - 2073-431X VL - 9 IS - 1 ER - TY - JOUR A1 - Strohmeier, Michael A1 - Montenegro, Sergio T1 - Coupled GPS/MEMS IMU Attitude Determination of Small UAVs with COTS JF - Electronics N2 - This paper proposes an attitude determination system for small Unmanned Aerial Vehicles (UAV) with a weight limit of 5 kg and a small footprint of 0.5m x 0.5 m. The system is realized by coupling single-frequency Global Positioning System (GPS) code and carrier-phase measurements with the data acquired from a Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU) using consumer-grade Components-Off-The-Shelf (COTS) only. The sensor fusion is accomplished using two Extended Kalman Filters (EKF) that are coupled by exchanging information about the currently estimated baseline. With a baseline of 48 cm, the static heading accuracy of the proposed system is comparable to the one of a commercial single-frequency GPS heading system with an accuracy of approximately 0.25°/m. Flight testing shows that the proposed system is able to obtain a reliable and stable GPS heading estimation without an aiding magnetometer. KW - Attitude Heading Reference System (AHRS) KW - magnetometer KW - MEMS IMU KW - Real-time Kinematics (RTK) KW - GPS KW - UAV KW - attitude determination Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171179 VL - 6 IS - 1 ER -