TY - JOUR A1 - Ascierto, Maria Libera A1 - Worschech, Andrea A1 - Yu, Zhiya A1 - Adams, Sharon A1 - Reinboth, Jennifer A1 - Chen, Nanhai G A1 - Pos, Zoltan A1 - Roychoudhuri, Rahul A1 - Di Pasquale, Giovanni A1 - Bedognetti, Davide A1 - Uccellini, Lorenzo A1 - Rossano, Fabio A1 - Ascierto, Paolo A A1 - Stroncek, David F A1 - Restifo, Nicholas P A1 - Wang, Ena A1 - Szalay, Aladar A A1 - Marincola, Francesco M T1 - Permissivity of the NCI-60 cancer cell lines to oncolytic Vaccinia Virus GLV-1h68 JF - BMC Cancer N2 - Background: Oncolytic viral therapy represents an alternative therapeutic strategy for the treatment of cancer. We previously described GLV-1h68, a modified Vaccinia Virus with exclusive tropism for tumor cells, and we observed a cell line-specific relationship between the ability of GLV-1h68 to replicate in vitro and its ability to colonize and eliminate tumor in vivo. Methods: In the current study we surveyed the in vitro permissivity to GLV-1h68 replication of the NCI-60 panel of cell lines. Selected cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain. In order to identify correlates of permissity to viral infection, we measured transcriptional profiles of the cell lines prior infection. Results: We observed highly heterogeneous permissivity to VACV infection amongst the cell lines. The heterogeneity of permissivity was independent of tissue with the exception of B cell derivation. Cell lines were also tested for permissivity to another Vaccinia Virus and a vesicular stomatitis virus (VSV) strain and a significant correlation was found suggesting a common permissive phenotype. While no clear transcriptional pattern could be identified as predictor of permissivity to infection, some associations were observed suggesting multifactorial basis permissivity to viral infection. Conclusions: Our findings have implications for the design of oncolytic therapies for cancer and offer insights into the nature of permissivity of tumor cells to viral infection. KW - gene-therapy KW - adenovirus KW - receptor KW - identification KW - infection KW - CD9 KW - panel Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141503 VL - 11 IS - 451 ER - TY - JOUR A1 - Wang, Huiqiang A1 - Chen, Nanhai G. A1 - Minev, Boris R. A1 - Szalay, Aladar A. T1 - Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells JF - Journal of Translational Medicine N2 - Background: Recent data suggest that cancer stem cells (CSCs) play an important role in cancer, as these cells possess enhanced tumor-forming capabilities and are responsible for relapses after apparently curative therapies have been undertaken. Hence, novel cancer therapies will be needed to test for both tumor regression and CSC targeting. The use of oncolytic vaccinia virus (VACV) represents an attractive anti-tumor approach and is currently under evaluation in clinical trials. The purpose of this study was to demonstrate whether VACV does kill CSCs that are resistant to irradiation and chemotherapy. Methods: Cancer stem-like cells were identified and separated from the human breast cancer cell line GI-101A by virtue of increased aldehyde dehydrogenase 1 (ALDH1) activity as assessed by the ALDEFLUOR assay and cancer stem cell-like features such as chemo-resistance, irradiation-resistance and tumor-initiating were confirmed in cell culture and in animal models. VACV treatments were applied to both ALDEFLUOR-positive cells in cell culture and in xenograft tumors derived from these cells. Moreover, we identified and isolated CD44\(^+\)CD24\(^+\)ESA\(^+\) cells from GI-101A upon an epithelial-mesenchymal transition (EMT). These cells were similarly characterized both in cell culture and in animal models. Results: We demonstrated for the first time that the oncolytic VACV GLV-1h68 strain replicated more efficiently in cells with higher ALDH1 activity that possessed stem cell-like features than in cells with lower ALDH1 activity. GLV-1h68 selectively colonized and eventually eradicated xenograft tumors originating from cells with higher ALDH1 activity. Furthermore, GLV-1h68 also showed preferential replication in CD44\(^+\)CD24\(^+\)ESA\(^+\) cells derived from GI-101A upon an EMT induction as well as in xenograft tumors originating from these cells that were more tumorigenic than CD44\(^+\)CD24\(^-\)ESA\(^+\) cells. Conclusions: Taken together, our findings indicate that GLV-1h68 efficiently replicates and kills cancer stem-like cells. Thus, GLV-1h68 may become a promising agent for eradicating both primary and metastatic tumors, especially tumors harboring cancer stem-like cells that are resistant to chemo and/or radiotherapy and may be responsible for recurrence of tumors. KW - tumors KW - therapy KW - metastasis KW - identification KW - lines KW - gene expression KW - in-vitro propagation KW - acute myeloid leukemia KW - epithelial-mesenchymal transition KW - subpopulation Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130019 VL - 10 IS - 167 ER -