TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Nolte, Ingo A1 - Ogilvie, Gregory A1 - Szalay, Aladar A. T1 - Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients N2 - Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An ‘ideal’ virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future. KW - Medizin KW - cancer KW - canine cancer therapy KW - oncolytic virus KW - oncolysis KW - target molecule KW - combination therapy Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-75128 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Bessler, Simon A1 - Cecil, Alexander A1 - Langbein-Laugwitz, Johanna A1 - Frentzen, Alexa A1 - Gentschev, Ivaylo A1 - Szalay, Aladar A. T1 - Preclinical Testing Oncolytic Vaccinia Virus Strain GLV-5b451 Expressing an Anti-VEGF Single-Chain Antibody for Canine Cancer Therapy JF - Viruses N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a novel approach for canine cancer therapy. Here we describe, for the first time, the characterization and the use of VACV strain GLV-5b451 expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as therapeutic agent against different canine cancers. Cell culture data demonstrated that GLV-5b451 efficiently infected and destroyed all four tested canine cancer cell lines including: mammary carcinoma (MTH52c), mammary adenoma (ZMTH3), prostate carcinoma (CT1258), and soft tissue sarcoma (STSA-1). The GLV-5b451 virus-mediated production of GLAF-2 antibody was observed in all four cancer cell lines. In addition, this antibody specifically recognized canine VEGF. Finally, in canine soft tissue sarcoma (CSTS) xenografted mice, a single systemic administration of GLV-5b451 was found to be safe and led to anti-tumor effects resulting in the significant reduction and substantial long-term inhibition of tumor growth. A CD31-based immuno-staining showed significantly decreased neo-angiogenesis in GLV-5b451-treated tumors compared to the controls. In summary, these findings indicate that GLV-5b451 has potential for use as a therapeutic agent in the treatment of CSTS. KW - canine cancer therapy KW - canine soft tissue sarcoma (CSTS) KW - oncolytic virus KW - cancer KW - canine cancer cell lines KW - antibody production KW - angiogenesis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125705 VL - 7 ER - TY - JOUR A1 - Adelfinger, Marion A1 - Gentschev, Ivaylo A1 - de Guibert, Julio Grimm A1 - Weibel, Stephanie A1 - Langbein-Laugwitz, Johanna A1 - Härtl, Barbara A1 - Escobar, Hugo Murua A1 - Nolte, Ingo A1 - Chen, Nanhai G. A1 - Aguilar, Richard J. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Evaluation of a New Recombinant Oncolytic Vaccinia Virus Strain GLV-5b451 for Feline Mammary Carcinoma Therapy JF - PLoS ONE N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis. In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model. KW - antibodies KW - cancer treatment KW - carcinomas KW - vaccinia virus KW - oncolytic viruses KW - viral replication KW - cell cultures KW - enzyme-linked immunoassays Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119387 VL - 9 IS - 8 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Patil, Sadeep S. A1 - Petrov, Ivan A1 - Cappello, Joseph A1 - Adelfinger, Marion A1 - Szalay, Aladar A. T1 - Oncolytic Virotherapy of Canine and Feline Cancer JF - Viruses N2 - Cancer is the leading cause of disease-related death in companion animals such as dogs and cats. Despite recent progress in the diagnosis and treatment of advanced canine and feline cancer, overall patient treatment outcome has not been substantially improved. Virotherapy using oncolytic viruses is one promising new strategy for cancer therapy. Oncolytic viruses (OVs) preferentially infect and lyse cancer cells, without causing excessive damage to surrounding healthy tissue, and initiate tumor-specific immunity. The current review describes the use of different oncolytic viruses for cancer therapy and their application to canine and feline cancer. KW - oncolytic virus KW - oncolysis KW - cancer KW - canine and feline cancer therapy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119753 VL - 6 IS - 5 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Müller, Meike A1 - Adelfinger, Marion A1 - Weibel, Stephanie A1 - Grummt, Friedrich A1 - Zimmermann, Martina A1 - Bitzer, Michael A1 - Heisig, Martin A1 - Zhang, Qian A1 - Yu, Yong A. A1 - Chen, Nanhai G. A1 - Stritzker, Jochen A1 - Lauer, Ulrich M. A1 - Szalay, Aladar A. T1 - Efficient Colonization and Therapy of Human Hepatocellular Carcinoma (HCC) Using the Oncolytic Vaccinia Virus Strain GLV-1h68 JF - PLOS ONE N2 - Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man. KW - Breast-tumors KW - Nude-mice KW - In-vivo KW - Cancer KW - Inhibitor KW - Tissue KW - Agent KW - COX-2 Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135319 VL - 6 IS - 7 ER - TY - JOUR A1 - Weibel, Stephanie A1 - Basse-Luesebrink, Thomas Christian A1 - Hess, Michael A1 - Hofmann, Elisabeth A1 - Seubert, Carolin A1 - Langbein-Laugwitz, Johanna A1 - Gentschev, Ivaylo A1 - Sturm, Volker Jörg Friedrich A1 - Ye, Yuxiang A1 - Kampf, Thomas A1 - Jakob, Peter Michael A1 - Szalay, Aladar A. T1 - Imaging of Intratumoral Inflammation during Oncolytic Virotherapy of Tumors by \(^{19}\)F-Magnetic Resonance Imaging (MRI) JF - PLoS ONE N2 - Background Oncolytic virotherapy of tumors is an up-coming, promising therapeutic modality of cancer therapy. Unfortunately, non-invasive techniques to evaluate the inflammatory host response to treatment are rare. Here, we evaluate \(^{19}\)F magnetic resonance imaging (MRI) which enables the non-invasive visualization of inflammatory processes in pathological conditions by the use of perfluorocarbon nanoemulsions (PFC) for monitoring of oncolytic virotherapy. Methodology/Principal Findings The Vaccinia virus strain GLV-1h68 was used as an oncolytic agent for the treatment of different tumor models. Systemic application of PFC emulsions followed by \(^1H\)/\(^{19}\)F MRI of mock-infected and GLV-1h68-infected tumor-bearing mice revealed a significant accumulation of the \(^{19}\)F signal in the tumor rim of virus-treated mice. Histological examination of tumors confirmed a similar spatial distribution of the \(^{19}\)F signal hot spots and \(CD68^+\)-macrophages. Thereby, the \(CD68^+\)-macrophages encapsulate the GFP-positive viral infection foci. In multiple tumor models, we specifically visualized early inflammatory cell recruitment in Vaccinia virus colonized tumors. Furthermore, we documented that the \(^{19}\)F signal correlated with the extent of viral spreading within tumors. Conclusions/Significance These results suggest \(^{19}\)F MRI as a non-invasive methodology to document the tumor-associated host immune response as well as the extent of intratumoral viral replication. Thus, \(^{19}\)F MRI represents a new platform to non-invasively investigate the role of the host immune response for therapeutic outcome of oncolytic virotherapy and individual patient response. KW - inflammation KW - fluorescence microscopy KW - oncolytic viruses KW - fluorescence imaging KW - macrophages KW - magnetic resonance imaging KW - histology KW - in vivo imaging Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130311 VL - 8 IS - 3 ER - TY - JOUR A1 - Patil, Sandeep S. A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Donat, Ulrike A1 - Hess, Michael A1 - Weibel, Stephanie A1 - Nolte, Ingo A1 - Frentzen, Alexa A1 - Szalay, Aladar A. T1 - Virotherapy of Canine Tumors with Oncolytic Vaccinia Virus GLV-1h109 Expressing an Anti-VEGF Single-Chain Antibody JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for cancer therapy. We have previously reported that oncolytic vaccinia virus strains expressing an anti-VEGF (Vascular Endothelial Growth Factor) single-chain antibody (scAb) GLAF-1 exhibited significant therapeutic efficacy for treatment of human tumor xenografts. Here, we describe the use of oncolytic vaccinia virus GLV-1h109 encoding GLAF-1 for canine cancer therapy. In this study we analyzed the virus-mediated delivery and production of scAb GLAF-1 and the oncolytic and immunological effects of the GLV-1h109 vaccinia virus strain against canine soft tissue sarcoma and canine prostate carcinoma in xenograft models. Cell culture data demonstrated that the GLV-1h109 virus efficiently infect, replicate in and destroy both tested canine cancer cell lines. In addition, successful expression of GLAF-1 was demonstrated in virus-infected canine cancer cells and the antibody specifically recognized canine VEGF. In two different xenograft models, the systemic administration of the GLV-1h109 virus was found to be safe and led to anti-tumor and immunological effects resulting in the significant reduction of tumor growth in comparison to untreated control mice. Furthermore, tumor-specific virus infection led to a continued production of functional scAb GLAF-1, resulting in inhibition of angiogenesis. Overall, the GLV-1h109-mediated cancer therapy and production of immunotherapeutic anti-VEGF scAb may open the way for combination therapy concept i.e. vaccinia virus mediated oncolysis and intratumoral production of therapeutic drugs in canine cancer patients. KW - angiogenesis KW - microenvironment KW - model KW - cancer KW - therapy KW - pet dogs KW - nude-mice KW - breast-tumors KW - microvascular density KW - endothelial growth-factor Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130039 VL - 7 IS - 10 ER - TY - JOUR A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Josupeit, Rafael A1 - Rudolph, Stephan A1 - Ehrig, Klaas A1 - Donat, Ulrike A1 - Weibel, Stephanie A1 - Chen, Nanhai G. A1 - Yu, Yong A. A1 - Zhang, Qian A1 - Heisig, Martin A1 - Thamm, Douglas A1 - Stritzker, Jochen A1 - MacNeill, Amy A1 - Szalay, Aladar A. T1 - Preclinical Evaluation of Oncolytic Vaccinia Virus for Therapy of Canine Soft Tissue Sarcoma JF - PLoS One N2 - Virotherapy using oncolytic vaccinia virus (VACV) strains is one promising new strategy for canine cancer therapy. In this study we describe the establishment of an in vivo model of canine soft tissue sarcoma (CSTS) using the new isolated cell line STSA-1 and the analysis of the virus-mediated oncolytic and immunological effects of two different Lister VACV LIVP1.1.1 and GLV-1h68 strains against CSTS. Cell culture data demonstrated that both tested VACV strains efficiently infected and destroyed cells of the canine soft tissue sarcoma line STSA-1. In addition, in our new canine sarcoma tumor xenograft mouse model, systemic administration of LIVP1.1.1 or GLV-1h68 viruses led to significant inhibition of tumor growth compared to control mice. Furthermore, LIVP1.1.1 mediated therapy resulted in almost complete tumor regression and resulted in long-term survival of sarcoma-bearing mice. The replication of the tested VACV strains in tumor tissues led to strong oncolytic effects accompanied by an intense intratumoral infiltration of host immune cells, mainly neutrophils. These findings suggest that the direct viral oncolysis of tumor cells and the virus-dependent activation of tumor-associated host immune cells could be crucial parts of anti-tumor mechanism in STSA-1 xenografts. In summary, the data showed that both tested vaccinia virus strains and especially LIVP1.1.1 have great potential for effective treatment of CSTS. KW - breast-tumors KW - animal-model KW - nude-mice KW - cell-line KW - in-vitro KW - glv-1h68 KW - cancer KW - virotherapy KW - dogs KW - neutrophils Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129998 VL - 7 IS - 5 ER - TY - JOUR A1 - Szalay, Aladar A A1 - Weibel, Stephanie A1 - Hofmann, Elisabeth A1 - Basse-Luesebrink, Thomas Christian A1 - Donat, Ulrike A1 - Seubert, Carolin A1 - Adelfinger, Marion A1 - Gnamlin, Prisca A1 - Kober, Christina A1 - Frentzen, Alexa A1 - Gentschev, Ivaylo A1 - Jakob, Peter Michael T1 - Treatment of malignant effusion by oncolytic virotherapy in an experimental subcutaneous xenograft model of lung cancer JF - Journal of Translational Medicine N2 - Background Malignant pleural effusion (MPE) is associated with advanced stages of lung cancer and is mainly dependent on invasion of the pleura and expression of vascular endothelial growth factor (VEGF) by cancer cells. As MPE indicates an incurable disease with limited palliative treatment options and poor outcome, there is an urgent need for new and efficient treatment options. Methods In this study, we used subcutaneously generated PC14PE6 lung adenocarcinoma xenografts in athymic mice that developed subcutaneous malignant effusions (ME) which mimic pleural effusions of the orthotopic model. Using this approach monitoring of therapeutic intervention was facilitated by direct observation of subcutaneous ME formation without the need of sacrificing mice or special imaging equipment as in case of MPE. Further, we tested oncolytic virotherapy using Vaccinia virus as a novel treatment modality against ME in this subcutaneous PC14PE6 xenograft model of advanced lung adenocarcinoma. Results We demonstrated significant therapeutic efficacy of Vaccinia virus treatment of both advanced lung adenocarcinoma and tumor-associated ME. We attribute the efficacy to the virus-mediated reduction of tumor cell-derived VEGF levels in tumors, decreased invasion of tumor cells into the peritumoral tissue, and to viral infection of the blood vessel-invading tumor cells. Moreover, we showed that the use of oncolytic Vaccinia virus encoding for a single-chain antibody (scAb) against VEGF (GLAF-1) significantly enhanced mono-therapy of oncolytic treatment. Conclusions Here, we demonstrate for the first time that oncolytic virotherapy using tumor-specific Vaccinia virus represents a novel and promising treatment modality for therapy of ME associated with advanced lung cancer. KW - Oncolytic virotherapy KW - Malignant effusion KW - Lung cancer KW - VEGF KW - Lungenkrebs KW - Vascular endothelial Growth Factor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-96016 UR - http://www.translational-medicine.com/content/11/1/106 ER - TY - JOUR A1 - Cecil, Alexander A1 - Gentschev, Ivaylo A1 - Adelfinger, Marion A1 - Dandekar, Thomas A1 - Szalay, Aladar A. T1 - Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models JF - Bioengineered N2 - Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients. KW - boolean modeling KW - oncolytic virus KW - human xenografted mouse models KW - cancer therapy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200507 VL - 10 IS - 1 ER - TY - JOUR A1 - Petrov, Ivan A1 - Gentschev, Ivaylo A1 - Vyalkova, Anna A1 - Elashry, Mohamed I. A1 - Klymiuk, Michele C. A1 - Arnhold, Stefan A1 - Szalay, Aladar A. T1 - Canine Adipose-Derived Mesenchymal Stem Cells (cAdMSCs) as a "Trojan Horse" in Vaccinia Virus Mediated Oncolytic Therapy against Canine Soft Tissue Sarcomas JF - Viruses N2 - Several oncolytic viruses (OVs) including various human and canine adenoviruses, canine distemper virus, herpes-simplex virus, reovirus, and members of the poxvirus family, such as vaccinia virus and myxoma virus, have been successfully tested for canine cancer therapy in preclinical and clinical settings. The success of the cancer virotherapy is dependent on the ability of oncolytic viruses to overcome the attacks of the host immune system, to preferentially infect and lyse cancer cells, and to initiate tumor-specific immunity. To date, several different strategies have been developed to overcome the antiviral host defense barriers. In our study, we used canine adipose-derived mesenchymal stem cells (cAdMSCs) as a “Trojan horse” for the delivery of oncolytic vaccinia virus Copenhagen strain to achieve maximum oncolysis against canine soft tissue sarcoma (CSTS) tumors. A single systemic administration of vaccinia virus-loaded cAdMSCs was found to be safe and led to the significant reduction and substantial inhibition of tumor growth in a CSTS xenograft mouse model. This is the first example that vaccinia virus-loaded cAdMSCs could serve as a therapeutic agent against CSTS tumors. KW - oncolytic virus KW - cancer KW - vaccinia virus KW - canine cancer cell lines KW - canine adipose-derived mesenchymal stem cells (cAdMSCs) KW - canine soft tissue sarcoma (CSTS) KW - canine cancer therapy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236007 VL - 12 IS - 7 ER - TY - JOUR A1 - Ye, Mingyu A1 - Keicher, Markus A1 - Gentschev, Ivaylo A1 - Szalay, Aladar A. T1 - Efficient selection of recombinant fluorescent vaccinia virus strains and rapid virus titer determination by using a multi-well plate imaging system JF - Biomedicines N2 - Engineered vaccinia virus (VACV) strains are used extensively as vectors for the development of novel cancer vaccines and cancer therapeutics. In this study, we describe for the first time a high-throughput approach for both fluorescent rVACV generation and rapid viral titer measurement with the multi-well plate imaging system, IncuCyte\(^®\)S3. The isolation of a single, well-defined plaque is critical for the generation of novel recombinant vaccinia virus (rVACV) strains. Unfortunately, current methods of rVACV engineering via plaque isolation are time-consuming and laborious. Here, we present a modified fluorescent viral plaque screening and selection strategy that allows one to generally obtain novel fluorescent rVACV strains in six days, with a minimum of just four days. The standard plaque assay requires chemicals for fixing and staining cells. Manual plaque counting based on visual inspection of the cell culture plates is time-consuming. Here, we developed a fluorescence-based plaque assay for quantifying the vaccinia virus that does not require a cell staining step. This approach is less toxic to researchers and is reproducible; it is thus an improvement over the traditional assay. Lastly, plaque counting by virtue of a fluorescence-based image is very convenient, as it can be performed directly on the computer. KW - fluorescent recombinant vaccinia virus KW - plaque isolation KW - IncuCyte\(^®\)S3 KW - plaque assay Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-245104 SN - 2227-9059 VL - 9 IS - 8 ER -