TY - JOUR A1 - Jazbutyte, Virginija A1 - Stumpner, Jan A1 - Redel, Andreas A1 - Lorenzen, Johan M. A1 - Roewer, Norbert A1 - Thum, Thomas A1 - Kehl, Franz T1 - Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo JF - PLoS One N2 - The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17b- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94615.5% vs. 17.163.62%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model. KW - smooth muscle cells KW - estrogens KW - heart KW - anesthetics KW - immunostaining KW - endothelial cells KW - gene expression KW - myocardial infarction Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151258 VL - 7 IS - 8 ER - TY - JOUR A1 - Jazbutyte, Virginija A1 - Fiedler, Jan A1 - Kneitz, Susanne A1 - Galuppo, Paolo A1 - Just, Annette A1 - Holzmann, Angelika A1 - Bauersachs, Johann A1 - Thum, Thomas T1 - MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart JF - AGE N2 - MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis. KW - cardiac fibrosis KW - cardiac aging KW - microRNAs KW - miR-22 KW - mimecan KW - osteoglycin Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126745 VL - 35 IS - 3 ER - TY - JOUR A1 - Stojanović, Stevan D. A1 - Fuchs, Maximilian A1 - Fiedler, Jan A1 - Xiao, Ke A1 - Meinecke, Anna A1 - Just, Annette A1 - Pich, Andreas A1 - Thum, Thomas A1 - Kunz, Meik T1 - Comprehensive bioinformatics identifies key microRNA players in ATG7-deficient lung fibroblasts JF - International Journal of Molecular Sciences N2 - Background: Deficient autophagy has been recently implicated as a driver of pulmonary fibrosis, yet bioinformatics approaches to study this cellular process are lacking. Autophagy-related 5 and 7 (ATG5/ATG7) are critical elements of macro-autophagy. However, an alternative ATG5/ATG7-independent macro-autophagy pathway was recently discovered, its regulation being unknown. Using a bioinformatics proteome profiling analysis of ATG7-deficient human fibroblasts, we aimed to identify key microRNA (miR) regulators in autophagy. Method: We have generated ATG7-knockout MRC-5 fibroblasts and performed mass spectrometry to generate a large-scale proteomics dataset. We further quantified the interactions between various proteins combining bioinformatics molecular network reconstruction and functional enrichment analysis. The predicted key regulatory miRs were validated via quantitative polymerase chain reaction. Results: The functional enrichment analysis of the 26 deregulated proteins showed decreased cellular trafficking, increased mitophagy and senescence as the major overarching processes in ATG7-deficient lung fibroblasts. The 26 proteins reconstitute a protein interactome of 46 nodes and miR-regulated interactome of 834 nodes. The miR network shows three functional cluster modules around miR-16-5p, miR-17-5p and let-7a-5p related to multiple deregulated proteins. Confirming these results in a biological setting, serially passaged wild-type and autophagy-deficient fibroblasts displayed senescence-dependent expression profiles of miR-16-5p and miR-17-5p. Conclusions: We have developed a bioinformatics proteome profiling approach that successfully identifies biologically relevant miR regulators from a proteomics dataset of the ATG-7-deficient milieu in lung fibroblasts, and thus may be used to elucidate key molecular players in complex fibrotic pathological processes. The approach is not limited to a specific cell-type and disease, thus highlighting its high relevance in proteome and non-coding RNA research. KW - bioinformatics KW - miR KW - proteomics KW - functional network analysis KW - senescence KW - lung fibrosis KW - autophagy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285181 SN - 1422-0067 VL - 21 IS - 11 ER -