TY - JOUR A1 - Moll, Corinna A1 - Reboredo, Jenny A1 - Schwarz, Thomas A1 - Appelt, Antje A1 - Schürlein, Sebastian A1 - Walles, Heike A1 - Nietzer, Sarah T1 - Tissue Engineering of a Human 3D in vitro Tumor Test System JF - Journal of Visualized Experiments N2 - Cancer is one of the leading causes of death worldwide. Current therapeutic strategies are predominantly developed in 2D culture systems, which inadequately reflect physiological conditions in vivo. Biological 3D matrices provide cells an environment in which cells can self-organize, allowing the study of tissue organization and cell differentiation. Such scaffolds can be seeded with a mixture of different cell types to study direct 3D cell-cell-interactions. To mimic the 3D complexity of cancer tumors, our group has developed a 3D in vitro tumor test system. Our 3D tissue test system models the in vivo situation of malignant peripheral nerve sheath tumors (MPNSTs), which we established with our decellularized porcine jejunal segment derived biological vascularized scaffold (BioVaSc). In our model, we reseeded a modified BioVaSc matrix with primary fibroblasts, microvascular endothelial cells (mvECs) and the S462 tumor cell line For static culture, the vascular structure of the BioVaSc is removed and the remaining scaffold is cut open on one side (Small Intestinal Submucosa SIS-Muc). The resulting matrix is then fixed between two metal rings (cell crowns). Another option is to culture the cell-seeded SIS-Muc in a flow bioreactor system that exposes the cells to shear stress. Here, the bioreactor is connected to a peristaltic pump in a self-constructed incubator. A computer regulates the arterial oxygen and nutrient supply via parameters such as blood pressure, temperature, and flow rate. This setup allows for a dynamic culture with either pressure-regulated pulsatile or constant flow. In this study, we could successfully establish both a static and dynamic 3D culture system for MPNSTs. The ability to model cancer tumors in a more natural 3D environment will enable the discovery, testing, and validation of future pharmaceuticals in a human-like model. KW - bioengineering KW - biomedical engineering KW - tissue engineering KW - biotechnology KW - cultured KW - tumor cells KW - cell culture KW - 3D in vitro models KW - bioreactor KW - dynamic culture conditions KW - tumor test system KW - primary cell isolation KW - BioVaSc KW - decellularization KW - equipment and supplies KW - cellular microenvironment KW - culture techniques KW - cell engineering KW - anatomy KW - physiology KW - molecular biology KW - cellular biology Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132277 UR - http://www.jove.com/video/50460 VL - 78 IS - e50460 ER - TY - JOUR A1 - Votteler, Miriam A1 - Carvajal Berrio, Daniel A. A1 - Pudlas, Marieke A1 - Walles, Heike A1 - Schenke-Layland, Katja T1 - Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy JF - Journal of Visual Expression N2 - Non-destructive, non-contact and label-free technologies to monitor cell and tissue cultures are needed in the field of biomedical research.1-5 However, currently available routine methods require processing steps and alter sample integrity. Raman spectroscopy is a fast method that enables the measurement of biological samples without the need for further processing steps. This laser-based technology detects the inelastic scattering of monochromatic light.6 As every chemical vibration is assigned to a specific Raman band (wavenumber in cm-1), each biological sample features a typical spectral pattern due to their inherent biochemical composition.7-9 Within Raman spectra, the peak intensities correlate with the amount of the present molecular bonds.1 Similarities and differences of the spectral data sets can be detected by employing a multivariate analysis (e.g. principal component analysis (PCA)).10 Here, we perform Raman spectroscopy of living cells and native tissues. Cells are either seeded on glass bottom dishes or kept in suspension under normal cell culture conditions (37 °C, 5% CO2) before measurement. Native tissues are dissected and stored in phosphate buffered saline (PBS) at 4 °C prior measurements. Depending on our experimental set up, we then either focused on the cell nucleus or extracellular matrix (ECM) proteins such as elastin and collagen. For all studies, a minimum of 30 cells or 30 random points of interest within the ECM are measured. Data processing steps included background subtraction and normalization. KW - tissue engineering KW - label-free analysis KW - raman spectroscopy KW - bioengineering KW - living cells KW - extracellular matrix Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124569 VL - 63 IS - e3977 ER - TY - JOUR A1 - Jakob, Franz A1 - Ebert, Regina A1 - Rudert, Maximilian A1 - Nöth, Ulrich A1 - Walles, Heike A1 - Docheva, Denitsa A1 - Schieker, Matthias A1 - Meinel, Lorenz A1 - Groll, Jürgen T1 - In situ guided tissue regeneration in musculoskeletal diseases and aging JF - Cell and Tissue Research N2 - In situ guided tissue regeneration, also addressed as in situ tissue engineering or endogenous regeneration, has a great potential for population-wide “minimal invasive” applications. During the last two decades, tissue engineering has been developed with remarkable in vitro and preclinical success but still the number of applications in clinical routine is extremely small. Moreover, the vision of population-wide applications of ex vivo tissue engineered constructs based on cells, growth and differentiation factors and scaffolds, must probably be deemed unrealistic for economic and regulation-related issues. Hence, the progress made in this respect will be mostly applicable to a fraction of post-traumatic or post-surgery situations such as big tissue defects due to tumor manifestation. Minimally invasive procedures would probably qualify for a broader application and ideally would only require off the shelf standardized products without cells. Such products should mimic the microenvironment of regenerating tissues and make use of the endogenous tissue regeneration capacities. Functionally, the chemotaxis of regenerative cells, their amplification as a transient amplifying pool and their concerted differentiation and remodeling should be addressed. This is especially important because the main target populations for such applications are the elderly and diseased. The quality of regenerative cells is impaired in such organisms and high levels of inhibitors also interfere with regeneration and healing. In metabolic bone diseases like osteoporosis, it is already known that antagonists for inhibitors such as activin and sclerostin enhance bone formation. Implementing such strategies into applications for in situ guided tissue regeneration should greatly enhance the efficacy of tailored procedures in the future. KW - in situ guided tissue regeneration KW - stem cells KW - scaffolds KW - regenerative medicine KW - mesenchymal tissues Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124738 VL - 347 IS - 3 ER - TY - JOUR A1 - Rackwitz, Lars A1 - Eden, Lars A1 - Reppenhagen, Stephan A1 - Reichert, Johannes C. A1 - Jakob, Franz A1 - Walles, Heike A1 - Pullig, Oliver A1 - Tuan, Rocky S. A1 - Rudert, Maximilian A1 - Nöth, Ulrich T1 - Stem cell- and growth factor-based regenerative therapies for avascular necrosis of the femoral head JF - Stem Cell Research & Therapy N2 - Avascular necrosis (AVN) of the femoral head is a debilitating disease of multifactorial genesis, predominately affects young patients, and often leads to the development of secondary osteoarthritis. The evolving field of regenerative medicine offers promising treatment strategies using cells, biomaterial scaffolds, and bioactive factors, which might improve clinical outcome. Early stages of AVN with preserved structural integrity of the subchondral plate are accessible to retrograde surgical procedures, such as core decompression to reduce the intraosseous pressure and to induce bone remodeling. The additive application of concentrated bone marrow aspirates, ex vivo expanded mesenchymal stem cells, and osteogenic or angiogenic growth factors (or both) holds great potential to improve bone regeneration. In contrast, advanced stages of AVN with collapsed subchondral bone require an osteochondral reconstruction to preserve the physiological joint function. Analogously to strategies for osteochondral reconstruction in the knee, anterograde surgical techniques, such as osteochondral transplantation (mosaicplasty), matrix-based autologous chondrocyte implantation, or the use of acellular scaffolds alone, might preserve joint function and reduce the need for hip replacement. This review summarizes recent experimental accomplishments and initial clinical findings in the field of regenerative medicine which apply cells, growth factors, and matrices to address the clinical problem of AVN. KW - osteochondral allografts KW - autologous chondrocyte implantation KW - osteogenesis imperfecta KW - segmental collapse KW - mesenchymal cells KW - progenitor cells KW - stromal cells KW - sheep model KW - colony-stimulating factor KW - core depression Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135413 VL - 3 IS - 7 ER -