TY - JOUR A1 - Weigel, Tobias A1 - Brennecke, Julian A1 - Hansmann, Jan T1 - Improvement of the electronic—neuronal interface by natural deposition of ECM JF - Materials N2 - The foreign body reaction to neuronal electrode implants limits potential applications as well as the therapeutic period. Developments in the basic electrode design might improve the tissue compatibility and thereby reduce the foreign body reaction. In this work, the approach of embedding 3D carbon nanofiber electrodes in extracellular matrix (ECM) synthesized by human fibroblasts for a compatible connection to neuronal cells was investigated. Porous electrode material was manufactured by solution coelectrospinning of polyacrylonitrile and polyamide as a fibrous porogen. Moreover, NaCl represented an additional particulate porogen. To achieve the required conductivity for an electrical interface, meshes were carbonized. Through the application of two different porogens, the electrodes' flexibility and porosity was improved. Human dermal fibroblasts were cultured on the electrode surface for ECM generation and removed afterwards. Scanning electron microscopy imaging revealed a nano fibrous ECM network covering the carbon fibers. The collagen amount of the ECM coating was quantified by hydroxyproline-assays. The modification with the natural protein coating on the electrode functionality resulted in a minor increase of the electrical capacity, which slightly improved the already outstanding electrical interface properties. Increased cell numbers of SH-SY5Y cell line on ECM-modified electrodes demonstrated an improved cell adhesion. During cell differentiation, the natural ECM enhanced the formation of neurites regarding length and branching. The conducted experiments indicated the prevention of direct cell-electrode contacts by the modification, which might help to shield temporary the electrode from immunological cells to reduce the foreign body reaction and improve the electrodes' tissue integration. KW - neuronal electrodes KW - carbon fiber KW - electrospinning KW - ECM coating Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-234047 SN - 1996-1944 VL - 14 IS - 6 ER - TY - THES A1 - Weigel, Tobias Maximilian T1 - Entwicklung von 3D-Herzschrittmacher-Elektroden auf Basis von Kohlenstoffnanofasern T1 - Development of 3D pacemaker electrodes based on carbon nano fibers N2 - Herzschrittmachersysteme sind eine weitverbreitete Möglichkeit Herz-Kreislauf-Erkrankungen zu behandeln. Wegen der natürlichen Reaktion des Immunsystems auf Fremdkörper, erfolgt aber eine fortschreitende Verkapselung der Herzschrittmacherelektrode. Die Folge ist eine ansteigende Verminderung der Stimulationseffizienz durch Erhöhung der Anregungsschwelle. Die Integration der Elektrode in das Gewebe ist dabei mangelhaft und wird bestimmt durch Implantateigenschaften wie Größe, Flexibilität und Dimensionalität. Um die Integration zu verbessern, stellen dreidimensionale (3D) bzw. gewebeartige Elektroden eine Alternative zu den derzeit verwendeten planaren Metallelektroden dar. Zur Entwicklung einer leitfähigen, 3D und faserförmigen Elektrode wurden in dieser Arbeit Kohlenstoff-Nanofaser-Scaffolds über Elektrospinnen hergestellt. Durch die Modifikation des Fasergerüstes mit Natriumchlorid (NaCl) während der Scaffoldherstellung, konnte das Fasernetzwerk aufgelockert und Poren generiert werden. Die Kohlenstofffaser-Elektroden zeigten einen effizienten Energieübertrag, welcher vergleichbar mit heutigen Titannitrid (TiN) -Elektroden ist. Die Auflockerung des Fasergewebes hatte eine verbesserte Flexibilität des Faserscaffolds zu Folge. Neben der Flexibilität, konnte auch die Infiltration von Zellen in das poröse Faserscaffold erheblich verbessert werden. Dabei konnten Fibroblasten durch das gesamte Scaffold migrieren. Die Kompatibilität mit kardialen Zellen, die Grundvoraussetzung von Herzschrittmacherelektroden, wurde in vitro nachgewiesen. Durch die Kombination aus dem 3D-Elektrodengerüst mit einer Co-Kultur aus humanen Kardiomyozyten, mesenchymalen Stammzellen und Fibroblasten, erfolgte eine Einbettung der Elektrode in funktionelles kardiales Gewebe. Dadurch konnte ein lebender Gewebe-Elektroden-Hybrid generiert werden, welcher möglicherweise die Elektrode vor Immunzellen in vivo abschirmen kann. Eine Zusammenführung der hybriden Elektrode mit einen Tissue-Engineerten humanen kardialen Patch in vitro, führte zu Bildung einer nahtlosen Elektronik-Gewebe-Schnittstelle. Die fusionierte Einheit wurde abschließend auf ihre mechanische Belastbarkeit getestet und konnte über einen Elektroden-Anschluss elektrisch stimuliert werden. N2 - The application of pacemaker systems is a widespread treatment of cardiovascular diseases. The inflammatory interaction of the immune system and the implant results in the formation of a fibrous capsule around the pacemaker’s electrode. The consequence is a progressing reduction of the stimulation efficiency by an increased excitation threshold. The primary cause of the encapsulation is the deficient integration of the electrode into the cardiac tissue, which is induces by the incompatible implant properties like size, flexibility and dimensionality. To improve the electrode’s integration, the application of three dimensional and tissue imitating electrodes represent an improvement of currently implanted planar electrodes. To develop a conductive and fibrous 3D-electrode, carbon nanofiber scaffolds were generated by electrospinning. By modifying the fiber network with NaCl during the scaffold preparation, the mesh openings could be loosened and pores generated. An efficient energy transfer of the resulting carbon fiber electrodes was demonstrated and is comparable to today's TiN electrodes. The loosening of the fiber network resulted in improved flexibility of the scaffold. In addition to the flexibility, the infiltration of cells into the porous fiber scaffold could be significantly enhanced. Thereby, fibroblasts were enabled to migrate through the entire scaffold. For application as a pacemaker electrode, the compatibility of the tissue electrode with cardiac cells in vitro was demonstrated. The combination of the 3D electrode Scaffold with a co-culture of human cardiomyocytes, mesenchymal stem cells and fibroblasts led to a partially embedded electrode in functional cardiac tissue. As a result, a living tissue-electrode hybrid could be generated which could possibly shield the electrode from immune cells in vivo. Implantation of the hybrid electrode into a tissue engineered human heart patch in vitro resulted in a seamless electronic tissue interface. This fused unit was conclusively tested for its functionality, like mechanical stability and the electrical stimulation of the patch by the in grown hybrid electrode. KW - Herzschrittmacher KW - Elektrode KW - Kohlenstoff KW - Nanofaser KW - 3D-Elektrode KW - electrode scaffold KW - Zell-Migration KW - Stimulation KW - Kohlenstofffaser KW - Elektrospinnen Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176362 ER - TY - JOUR A1 - Jannasch, Maren A1 - Weigel, Tobias A1 - Engelhardt, Lisa A1 - Wiezoreck, Judith A1 - Gaetzner, Sabine A1 - Walles, Heike A1 - Schmitz, Tobias A1 - Hansmann, Jan T1 - \({In}\) \({vitro}\) chemotaxis and tissue remodeling assays quantitatively characterize foreign body reaction JF - ALTEX - Alternatives to Animal Experimentation N2 - Surgical implantation of a biomaterial triggers foreign-body-induced fibrous encapsulation. Two major mechanisms of this complex physiological process are (I) chemotaxis of fibroblasts from surrounding tissue to the implant region, followed by (II) tissue remodeling. As an alternative to animal studies, we here propose a process-aligned \({in}\) \({vitro}\) test platform to investigate the material dependency of fibroblast chemotaxis and tissue remodeling mediated by material-resident macrophages. Embedded in a biomimetic three-dimensional collagen hydrogel, chemotaxis of fibroblasts in the direction of macrophage-material-conditioned cell culture supernatant was analyzed by live cell imaging. A combination of statistical analysis with a complementary parameterized random walk model allowed quantitative and qualitative characterization of the cellular walk process. We thereby identified an increasing macrophage-mediated chemotactic potential ranking of biomaterials from glass over polytetrafluorethylene to titanium. To address long-term effects of biomaterial-resident macrophages on fibroblasts in a three-dimensional microenvironment, we further studied tissue remodeling by applying macrophage-material-conditioned medium on fibrous \({in}\) \({vitro}\) tissue models. A high correlation of the \({in}\) \({vitro}\) tissue model to state of the art \({in}\) \({vivo}\) study data was found. Titanium exhibited a significantly lower tissue remodeling capacity compared to polytetrafluorethylene. With this approach, we identified a material dependency of both chemotaxis and tissue remodeling processes, strengthening knowledge on their specific contribution to the foreign body reaction. KW - medicine KW - foreign body reaction KW - fibroblast chemotaxis KW - tissue remodeling KW - in vitro KW - quanititative characterization Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172080 VL - 34 IS - 2 ER - TY - JOUR A1 - Weigel, Tobias A1 - Malkmus, Christoph A1 - Weigel, Verena A1 - Wußmann, Maximiliane A1 - Berger, Constantin A1 - Brennecke, Julian A1 - Groeber‐Becker, Florian A1 - Hansmann, Jan T1 - Fully Synthetic 3D Fibrous Scaffolds for Stromal Tissues—Replacement of Animal‐Derived Scaffold Materials Demonstrated by Multilayered Skin JF - Advanced Materials N2 - The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties. Synthetic matrices are usually completely degraded or are inert regarding cellular remodeling. Based on a refined electrospinning process, a method is developed to generate synthetic scaffolds with highly porous fibrous structures and enhanced fiber‐to‐fiber distances. Since this approach allows for cell migration, matrix remodeling, and ECM synthesis, the scaffold provides an ideal platform for the generation of soft tissue equivalents. Using this matrix, an electrospun‐based multilayered skin equivalent composed of a stratified epidermis, a dermal compartment, and a subcutis is able to be generated without the use of animal matrix components. The extension of classical dense electrospun scaffolds with high porosities and motile fibers generates a fully synthetic and defined alternative to collagen‐gel‐based tissue models and is a promising system for the construction of tissue equivalents as in vitro models or in vivo implants. KW - 3D scaffolds KW - electrospinning KW - highly porous materials KW - multilayered skin KW - stromal tissues Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276403 VL - 34 IS - 10 ER - TY - JOUR A1 - Weigel, Tobias A1 - Schmitz, Tobias A1 - Pfister, Tobias A1 - Gaetzner, Sabine A1 - Jannasch, Maren A1 - Al-Hijailan, Reem A1 - Schürlein, Sebastian A1 - Suliman, Salwa A1 - Mustafa, Kamal A1 - Hansmann, Jan T1 - A three-dimensional hybrid pacemaker electrode seamlessly integrates into engineered, functional human cardiac tissue in vitro JF - Scientific Reports N2 - Pacemaker systems are an essential tool for the treatment of cardiovascular diseases. However, the immune system’s natural response to a foreign body results in the encapsulation of a pacemaker electrode and an impaired energy efficiency by increasing the excitation threshold. The integration of the electrode into the tissue is affected by implant properties such as size, mechanical flexibility, shape, and dimensionality. Three-dimensional, tissue-like electrode scaffolds render an alternative to currently used planar metal electrodes. Based on a modified electrospinning process and a high temperature treatment, a conductive, porous fiber scaffold was fabricated. The electrical and immunological properties of this 3D electrode were compared to 2D TiN electrodes. An increased surface of the fiber electrode compared to the planar 2D electrode, showed an enhanced electrical performance. Moreover, the migration of cells into the 3D construct was observed and a lower inflammatory response was induced. After early and late in vivo host response evaluation subcutaneously, the 3D fiber scaffold showed no adverse foreign body response. By embedding the 3D fiber scaffold in human cardiomyocytes, a tissue-electrode hybrid was generated that facilitates a high regenerative capacity and a low risk of fibrosis. This hybrid was implanted onto a spontaneously beating, tissue-engineered human cardiac patch to investigate if a seamless electronic-tissue interface is generated. The fusion of this hybrid electrode with a cardiac patch resulted in a mechanical stable and electrical excitable unit. Thereby, the feasibility of a seamless tissue-electrode interface was proven. KW - biomedical materials KW - cardiac device therapy KW - hybrid pacemaker Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177368 VL - 8 IS - 14545 ER - TY - JOUR A1 - Al-Hejailan, Reem A1 - Weigel, Tobias A1 - Schürlein, Sebastian A1 - Berger, Constantin A1 - Al-Mohanna, Futwan A1 - Hansmann, Jan T1 - Decellularization of full heart — optimizing the classical sodium-dodecyl-sulfate-based decellularization protocol JF - Bioengineering N2 - Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds. KW - tissue engineering KW - decellularization KW - vascularized scaffold KW - cardiac patch KW - dynamic culture Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270781 SN - 2306-5354 VL - 9 IS - 4 ER - TY - JOUR A1 - Schmitz, Tobias A1 - Jannasch, Maren A1 - Weigel, Tobias A1 - Moseke, Claus A1 - Gbureck, Uwe A1 - Groll, Jürgen A1 - Walles, Heike A1 - Hansmann, Jan T1 - Nanotopographical Coatings Induce an Early Phenotype-Specific Response of Primary Material-Resident M1 and M2 Macrophages JF - Materials N2 - Implants elicit an immunological response after implantation that results in the worst case in a complete implant rejection. This biomaterial-induced inflammation is modulated by macrophages and can be influenced by nanotopographical surface structures such as titania nanotubes or fractal titanium nitride (TiN) surfaces. However, their specific impact on a distinct macrophage phenotype has not been identified. By using two different levels of nanostructures and smooth samples as controls, the influence of tubular TiO2 and fractal TiN nanostructures on primary human macrophages with M1 or M2-phenotype was investigated. Therefore, nanotopographical coatings were either, directly generated by physical vapor deposition (PVD) or by electrochemical anodization of titanium PVD coatings. The cellular response of macrophages was quantitatively assessed to demonstrate a difference in biocompatibility of nanotubes in respect to human M1 and M2-macrophages. Depending on the tube diameter of the nanotubular surfaces, low cell numbers and impaired cellular activity, was detected for M2-macrophages, whereas the impact of nanotubes on M1-polarized macrophages was negligible. Importantly, we could confirm this phenotypic response on the fractal TiN surfaces. The results indicate that the investigated topographies specifically impact the macrophage M2-subtype that modulates the formation of the fibrotic capsule and the long-term response to an implant. KW - nanotopographical surfaces KW - combination of physical vapor deposition and electrochemical etching KW - defined humanized test system KW - inflammatory response Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-203378 SN - 1996-1944 VL - 13 IS - 5 ER - TY - JOUR A1 - Christ, Bastian A1 - Glaubitt, Walther A1 - Berberich, Katrin A1 - Weigel, Tobias A1 - Probst, Jörn A1 - Sextl, Gerhard A1 - Dembski, Sofia T1 - Sol-gel-derived fibers based on amorphous α-hydroxy-carboxylate-modified titanium(IV) oxide as a 3-dimensional scaffold JF - Materials N2 - The development of novel fibrous biomaterials and further processing of medical devices is still challenging. For instance, titanium(IV) oxide is a well-established biocompatible material, and the synthesis of TiO\(_x\) particles and coatings via the sol-gel process has frequently been published. However, synthesis protocols of sol-gel-derived TiO\(_x\) fibers are hardly known. In this publication, the authors present a synthesis and fabrication of purely sol-gel-derived TiO\(_x\) fiber fleeces starting from the liquid sol-gel precursor titanium ethylate (TEOT). Here, the α-hydroxy-carboxylic acid lactic acid (LA) was used as a chelating ligand to reduce the reactivity towards hydrolysis of TEOT enabling a spinnable sol. The resulting fibers were processed into a non-woven fleece, characterized with FTIR, \(^{13}\)C-MAS-NMR, XRD, and screened with regard to their stability in physiological solution. They revealed an unexpected dependency between the LA content and the dissolution behavior. Finally, in vitro cell culture experiments proved their potential suitability as an open-mesh structured scaffold material, even for challenging applications such as therapeutic medicinal products (ATMPs). KW - sol-gel chemistry KW - scaffold KW - dry spinning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-270694 SN - 1996-1944 VL - 15 IS - 8 ER - TY - JOUR A1 - Jannasch, Maren A1 - Gaetzner, Sabine A1 - Weigel, Tobias A1 - Walles, Heike A1 - Schmitz, Tobias A1 - Hansmann, Jan T1 - A comparative multi-parametric in vitro model identifies the power of test conditions to predict the fibrotic tendency of a biomaterial JF - Scientific Reports N2 - Despite growing effort to advance materials towards a low fibrotic progression, all implants elicit adverse tissue responses. Pre-clinical biomaterial assessment relies on animals testing, which can be complemented by in vitro tests to address the Russell and Burch’s 3R aspect of reducing animal burden. However, a poor correlation between in vitro and in vivo biomaterial assessments confirms a need for suitable in vitro biomaterial tests. The aim of the study was to identify a test setting, which is predictive and might be time- and cost-efficient. We demonstrated how sensitive in vitro biomaterial assessment based on human primary macrophages depends on test conditions. Moreover, possible clinical scenarios such as lipopolysaccharide contamination, contact to autologous blood plasma, and presence of IL-4 in an immune niche influence the outcome of a biomaterial ranking. Nevertheless, by using glass, titanium, polytetrafluorethylene, silicone, and polyethylene representing a specific material-induced fibrotic response and by comparison to literature data, we were able to identify a test condition that provides a high correlation to state-of-the-art in vivo studies. Most important, biomaterial ranking obtained under native plasma test conditions showed a high predictive accuracy compared to in vivo assessments, strengthening a biomimetic three-dimensional in vitro test platform. KW - inflammation KW - experimental models of disease KW - biomaterial tests KW - in vitro Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170908 VL - 7 IS - 1689 ER -