TY - JOUR A1 - Isles, Anthony R. A1 - Ingason, Andrés A1 - Lowther, Chelsea A1 - Walters, James A1 - Gawlick, Micha A1 - Stöber, Gerald A1 - Rees, Elliott A1 - Martin, Joanna A1 - Little, Rosie B. A1 - Potter, Harry A1 - Georgieva, Lyudmila A1 - Pizzo, Lucilla A1 - Ozaki, Norio A1 - Aleksic, Branko A1 - Kushima, Itaru A1 - Ikeda, Masashi A1 - Iwata, Nakao A1 - Levinson, Douglas F. A1 - Gejman, Pablo V. A1 - Shi, Jianxin A1 - Sanders, Alan R. A1 - Duan, Jubao A1 - Willis, Joseph A1 - Sisodiya, Sanjay A1 - Costain, Gregory A1 - Werge, Thomas M. A1 - Degenhardt, Franziska A1 - Giegling, Ina A1 - Rujescu, Dan A1 - Hreidarsson, Stefan J. A1 - Saemundsen, Evald A1 - Ahn, Joo Wook A1 - Ogilvie, Caroline A1 - Girirajan, Santhosh D. A1 - Stefansson, Hreinn A1 - Stefansson, Kari A1 - O'Donovan, Michael C. A1 - Owen, Michael J. A1 - Bassett, Anne A1 - Kirov, George T1 - Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders JF - PLoS Genetics N2 - Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling. KW - interstitial duplications KW - schizophrenia KW - developmental delay KW - autism spectrum disorder KW - parental origin KW - genetics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166706 VL - 12 IS - 5 ER - TY - JOUR A1 - Havik, Bjarte A1 - Degenhardt, Franziska A. A1 - Johansson, Stefan A1 - Fernandes, Carla P. D. A1 - Hinney, Anke A1 - Scherag, André A1 - Lybaek, Helle A1 - Djurovic, Srdjan A1 - Christoforou, Andrea A1 - Ersland, Kari M. A1 - Giddaluru, Sudheer A1 - O'Donovan, Michael C. A1 - Owen, Michael J. A1 - Craddock, Nick A1 - Mühleisen, Thomas W. A1 - Mattheisen, Manuel A1 - Schimmelmann, Benno G. A1 - Renner, Tobias A1 - Warnke, Andreas A1 - Herpertz-Dahlmann, Beate A1 - Sinzig, Judith A1 - Albayrak, Özgür A1 - Rietschel, Marcella A1 - Nöthen, Markus M. A1 - Bramham, Clive R. A1 - Werge, Thomas A1 - Hebebrand, Johannes A1 - Haavik, Jan A1 - Andreassen, Ole A. A1 - Cichon, Sven A1 - Steen, Vidar M. A1 - Le Hellard, Stephanie T1 - DCLK1 Variants Are Associated across Schizophrenia and Attention Deficit/Hyperactivity Disorder JF - PLoS One N2 - Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also genotyped the DCLK1 region in additional samples of cases with SCZ, BP or ADHD and controls that had not been whole-genome typed. In total, 9895 subjects were analysed, including 5308 normal controls and 4,587 patients (1,125 with SCZ, 2,496 with BP and 966 with ADHD). Several DCLK1 variants were associated with disease phenotypes in the different samples. The main effect was observed for rs7989807 in intron 3, which was strongly associated with SCZ alone and even more so when cases with SCZ and ADHD were combined (P-value = 4x10\(^{-5}\) and 4x10\(^{-6}\), respectively). Associations were also observed with additional markers in intron 3 (combination of SCZ, ADHD and BP), intron 19 (SCZ+BP) and the 3'UTR (SCZ+BP). Our results suggest that genetic variants in DCLK1 are associated with SCZ and, to a lesser extent, with ADHD and BP. Interestingly the association is strongest when SCZ and ADHD are considered together, suggesting common genetic susceptibility. Given that DCLK1 variants were previously found to be associated with cognitive traits, these results are consistent with the role of DCLK1 in neurodevelopment and synaptic plasticity. KW - psychosis KW - deficit hyperactivity disorder KW - genome-wide association KW - bipolar disorder KW - VAL66MET polymorphism KW - doublecortine-like KW - genes KW - kinase KW - BDNF KW - endophenotype Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135285 VL - 7 IS - 4 ER -