TY - JOUR A1 - Schuster, Sarah A1 - Lisack, Jaime A1 - Subota, Ines A1 - Zimmermann, Henriette A1 - Reuter, Christian A1 - Mueller, Tobias A1 - Morriswood, Brooke A1 - Engstler, Markus T1 - Unexpected plasiticty in the life cycle of Trypanosoma brucei JF - eLife N2 - African trypanosomes cause sleeping sickness in humans and nagana in cattle. These unicellular parasites are transmitted by the bloodsucking tsetse fly. In the mammalian host’s circulation, proliferating slender stage cells differentiate into cell cycle-arrested stumpy stage cells when they reach high population densities. This stage transition is thought to fulfil two main functions: first, it auto-regulates the parasite load in the host; second, the stumpy stage is regarded as the only stage capable of successful vector transmission. Here, we show that proliferating slender stage trypanosomes express the mRNA and protein of a known stumpy stage marker, complete the complex life cycle in the fly as successfully as the stumpy stage, and require only a single parasite for productive infection. These findings suggest a reassessment of the traditional view of the trypanosome life cycle. They may also provide a solution to a long-lasting paradox, namely the successful transmission of parasites in chronic infections, despite low parasitemia. KW - trypanosoma KW - sleeping sickness KW - tsetse fly KW - transmission KW - life cycle KW - development Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261744 VL - 10 ER - TY - JOUR A1 - Zimmermann, Henriette A1 - Subota, Ines A1 - Batram, Christopher A1 - Kramer, Susanne A1 - Janzen, Christian J. A1 - Jones, Nicola G. A1 - Engstler, Markus T1 - A quorum sensing-independent path to stumpy development in Trypanosoma brucei JF - PLoS Pathogens N2 - For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival. KW - Trypanosoma KW - hyperexpression techniques KW - parasitic cell cycles KW - cloning KW - cell cycle and cell division KW - cell differentiation KW - tetracyclines KW - parasitic diseases Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158230 VL - 13 IS - 4 ER -