TY - JOUR A1 - Proppert, Sven A1 - Wolter, Steve A1 - Holm, Thorge A1 - Klein, Theresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Cubic B-spline calibration for 3D super-resolution measurements using astigmatic imaging JF - Optics Express N2 - In recent years three-dimensional (3D) super-resolution fluorescence imaging by single-molecule localization (localization microscopy) has gained considerable interest because of its simple implementation and high optical resolution. Astigmatic and biplane imaging are experimentally simple methods to engineer a 3D-specific point spread function (PSF), but existing evaluation methods have proven problematic in practical application. Here we introduce the use of cubic B-splines to model the relationship of axial position and PSF width in the above mentioned approaches and compare the performance with existing methods. We show that cubic B-splines are the first method that can combine precision, accuracy and simplicity. KW - three-dimensional microscopy KW - fluorescence microscopy KW - medical and biological imaging KW - superresolution Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119730 SN - 1094-4087 VL - 22 IS - 9 ER - TY - JOUR A1 - Laine, Romain F. A1 - Albecka, Anna A1 - van de Linde, Sebastian A1 - Rees, Eric J. A1 - Crump, Colin M. A1 - Kaminski, Clemens F. T1 - Structural analysis of herpes simplex virus by optical super-resolution imaging JF - Nature Communications N2 - Herpes simplex virus type-1 (HSV-1) is one of the most widespread pathogens among humans. Although the structure of HSV-1 has been extensively investigated, the precise organization of tegument and envelope proteins remains elusive. Here we use super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) in combination with a model-based analysis of single-molecule localization data, to determine the position of protein layers within virus particles. We resolve different protein layers within individual HSV-1 particles using multi-colour dSTORM imaging and discriminate envelope-anchored glycoproteins from tegument proteins, both in purified virions and in virions present in infected cells. Precise characterization of HSV-1 structure was achieved by particle averaging of purified viruses and model-based analysis of the radial distribution of the tegument proteins VP16, VP1/2 and pUL37, and envelope protein gD. From this data, we propose a model of the protein organization inside the tegument. KW - tegument protein pUL36 KW - fluorescence microscopy KW - monoclonal antibodies KW - 3-dimensional structure KW - type-1 KW - nuclear pore complex KW - reconstruction microscopy KW - localization microscopy KW - resolution KW - envelopment Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144623 VL - 6 IS - 5980 ER - TY - JOUR A1 - Wäldchen, Sina A1 - Lehmann, Julian A1 - Klein, Teresa A1 - van de Linde, Sebastian A1 - Sauer, Markus T1 - Light-induced cell damage in live-cell super-resolution microscopy JF - Scientific Reports N2 - Super-resolution microscopy can unravel previously hidden details of cellular structures but requires high irradiation intensities to use the limited photon budget efficiently. Such high photon densities are likely to induce cellular damage in live-cell experiments. We applied single-molecule localization microscopy conditions and tested the influence of irradiation intensity, illumination-mode, wavelength, light-dose, temperature and fluorescence labeling on the survival probability of different cell lines 20-24 hours after irradiation. In addition, we measured the microtubule growth speed after irradiation. The photo-sensitivity is dramatically increased at lower irradiation wavelength. We observed fixation, plasma membrane permeabilization and cytoskeleton destruction upon irradiation with shorter wavelengths. While cells stand light intensities of similar to 1 kW cm\(^{-2}\) at 640 nm for several minutes, the maximum dose at 405 nm is only similar to 50 J cm\(^{-2}\), emphasizing red fluorophores for live-cell localization microscopy. We also present strategies to minimize phototoxic factors and maximize the cells ability to cope with higher irradiation intensities. KW - optical reconstruction microscopy KW - tag fusion proteins KW - localization microscopy KW - photodynamic therapy KW - diffraction limit KW - illumination microscopy KW - structured illumination KW - fluorescent probes KW - in vitro KW - dynamics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145207 VL - 5 IS - 15348 ER -