TY - JOUR A1 - Kress, Michaela A1 - Hüttenhofer, Alexander A1 - Landry, Marc A1 - Kuner, Rohini A1 - Favereaux, Alexandre A1 - Greenberg, David A1 - Bednarik, Josef A1 - Heppenstall, Paul A1 - Kronenberg, Florian A1 - Malcangio, Marzia A1 - Rittner, Heike A1 - Üçeyler, Nurcan A1 - Trajanoski, Zlatko A1 - Mouritzen, Peter A1 - Birklein, Frank A1 - Sommer, Claudia A1 - Soreq, Hermona T1 - microRNAs in nociceptive circuits as predictors of future clinical applications JF - Frontiers in Molecular Neuroscience N2 - Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs – and microRNAs (miRNAs) in particular – regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals. KW - chronic pain KW - biomarker KW - polymorphism KW - miRNA-based diagnostics KW - miRNA expression patterns KW - miRNA polymorphisms KW - antagomir KW - miRNA-based analgesic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154597 VL - 6 IS - 33 ER - TY - JOUR A1 - Hoernes, Thomas Philipp A1 - Faserl, Klaus A1 - Juen, Michael Andreas A1 - Kremser, Johannes A1 - Gasser, Catherina A1 - Fuchs, Elisabeth A1 - Shi, Xinying A1 - Siewert, Aaron A1 - Lindner, Herbert A1 - Kreutz, Christoph A1 - Micura, Ronald A1 - Joseph, Simpson A1 - Höbartner, Claudia A1 - Westhof, Eric A1 - Hüttenhofer, Alexander A1 - Erlacher, Matthias David T1 - Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions JF - Nature Communications N2 - The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited. KW - chemical modification KW - nucleic acids KW - ribozymes KW - RNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-321067 VL - 9 ER -