TY - JOUR A1 - Lüke, Florian A1 - Haller, Florian A1 - Utpatel, Kirsten A1 - Krebs, Markus A1 - Meidenbauer, Norbert A1 - Scheiter, Alexander A1 - Spoerl, Silvia A1 - Heudobler, Daniel A1 - Sparrer, Daniela A1 - Kaiser, Ulrich A1 - Keil, Felix A1 - Schubart, Christoph A1 - Tögel, Lars A1 - Einhell, Sabine A1 - Dietmaier, Wolfgang A1 - Huss, Ralf A1 - Dintner, Sebastian A1 - Sommer, Sebastian A1 - Jordan, Frank A1 - Goebeler, Maria-Elisabeth A1 - Metz, Michaela A1 - Haake, Diana A1 - Scheytt, Mithun A1 - Gerhard-Hartmann, Elena A1 - Maurus, Katja A1 - Brändlein, Stephanie A1 - Rosenwald, Andreas A1 - Hartmann, Arndt A1 - Märkl, Bruno A1 - Einsele, Hermann A1 - Mackensen, Andreas A1 - Herr, Wolfgang A1 - Kunzmann, Volker A1 - Bargou, Ralf A1 - Beckmann, Matthias W. A1 - Pukrop, Tobias A1 - Trepel, Martin A1 - Evert, Matthias A1 - Claus, Rainer A1 - Kerscher, Alexander T1 - Identification of disparities in personalized cancer care — a joint approach of the German WERA consortium JF - Cancers N2 - (1) Background: molecular tumor boards (MTBs) are crucial instruments for discussing and allocating targeted therapies to suitable cancer patients based on genetic findings. Currently, limited evidence is available regarding the regional impact and the outreach component of MTBs; (2) Methods: we analyzed MTB patient data from four neighboring Bavarian tertiary care oncology centers in Würzburg, Erlangen, Regensburg, and Augsburg, together constituting the WERA Alliance. Absolute patient numbers and regional distribution across the WERA-wide catchment area were weighted with local population densities; (3) Results: the highest MTB patient numbers were found close to the four cancer centers. However, peaks in absolute patient numbers were also detected in more distant and rural areas. Moreover, weighting absolute numbers with local population density allowed for identifying so-called white spots—regions within our catchment that were relatively underrepresented in WERA MTBs; (4) Conclusions: investigating patient data from four neighboring cancer centers, we comprehensively assessed the regional impact of our MTBs. The results confirmed the success of existing collaborative structures with our regional partners. Additionally, our results help identifying potential white spots in providing precision oncology and help establishing a joint WERA-wide outreach strategy. KW - precision oncology KW - MTB KW - patient access KW - cancer care KW - outreach KW - real world data KW - outcomes research Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290311 SN - 2072-6694 VL - 14 IS - 20 ER - TY - JOUR A1 - Marquardt, André A1 - Solimando, Antonio Giovanni A1 - Kerscher, Alexander A1 - Bittrich, Max A1 - Kalogirou, Charis A1 - Kübler, Hubert A1 - Rosenwald, Andreas A1 - Bargou, Ralf A1 - Kollmannsberger, Philip A1 - Schilling, Bastian A1 - Meierjohann, Svenja A1 - Krebs, Markus T1 - Subgroup-Independent Mapping of Renal Cell Carcinoma — Machine Learning Reveals Prognostic Mitochondrial Gene Signature Beyond Histopathologic Boundaries JF - Frontiers in Oncology N2 - Background: Renal cell carcinoma (RCC) is divided into three major histopathologic groups—clear cell (ccRCC), papillary (pRCC) and chromophobe RCC (chRCC). We performed a comprehensive re-analysis of publicly available RCC datasets from the TCGA (The Cancer Genome Atlas) database, thereby combining samples from all three subgroups, for an exploratory transcriptome profiling of RCC subgroups. Materials and Methods: We used FPKM (fragments per kilobase per million) files derived from the ccRCC, pRCC and chRCC cohorts of the TCGA database, representing transcriptomic data of 891 patients. Using principal component analysis, we visualized datasets as t-SNE plot for cluster detection. Clusters were characterized by machine learning, resulting gene signatures were validated by correlation analyses in the TCGA dataset and three external datasets (ICGC RECA-EU, CPTAC-3-Kidney, and GSE157256). Results: Many RCC samples co-clustered according to histopathology. However, a substantial number of samples clustered independently from histopathologic origin (mixed subgroup)—demonstrating divergence between histopathology and transcriptomic data. Further analyses of mixed subgroup via machine learning revealed a predominant mitochondrial gene signature—a trait previously known for chRCC—across all histopathologic subgroups. Additionally, ccRCC samples from mixed subgroup presented an inverse correlation of mitochondrial and angiogenesis-related genes in the TCGA and in three external validation cohorts. Moreover, mixed subgroup affiliation was associated with a highly significant shorter overall survival for patients with ccRCC—and a highly significant longer overall survival for chRCC patients. Conclusions: Pan-RCC clustering according to RNA-sequencing data revealed a distinct histology-independent subgroup characterized by strengthened mitochondrial and weakened angiogenesis-related gene signatures. Moreover, affiliation to mixed subgroup went along with a significantly shorter overall survival for ccRCC and a longer overall survival for chRCC patients. Further research could offer a therapy stratification by specifically addressing the mitochondrial metabolism of such tumors and its microenvironment. KW - kidney cancer KW - pan-RCC KW - machine learning KW - mitochondrial DNA KW - mtDNA KW - mTOR Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232107 SN - 2234-943X VL - 11 ER - TY - JOUR A1 - Marquardt, André A1 - Kollmannsberger, Philip A1 - Krebs, Markus A1 - Argentiero, Antonella A1 - Knott, Markus A1 - Solimando, Antonio Giovanni A1 - Kerscher, Alexander Georg T1 - Visual clustering of transcriptomic data from primary and metastatic tumors — dependencies and novel pitfalls JF - Genes N2 - Personalized oncology is a rapidly evolving area and offers cancer patients therapy options that are more specific than ever. However, there is still a lack of understanding regarding transcriptomic similarities or differences of metastases and corresponding primary sites. Applying two unsupervised dimension reduction methods (t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection (UMAP)) on three datasets of metastases (n = 682 samples) with three different data transformations (unprocessed, log10 as well as log10 + 1 transformed values), we visualized potential underlying clusters. Additionally, we analyzed two datasets (n = 616 samples) containing metastases and primary tumors of one entity, to point out potential familiarities. Using these methods, no tight link between the site of resection and cluster formation outcome could be demonstrated, or for datasets consisting of solely metastasis or mixed datasets. Instead, dimension reduction methods and data transformation significantly impacted visual clustering results. Our findings strongly suggest data transformation to be considered as another key element in the interpretation of visual clustering approaches along with initialization and different parameters. Furthermore, the results highlight the need for a more thorough examination of parameters used in the analysis of clusters. KW - visual clustering KW - t-SNE KW - UMAP KW - transcriptomic analysis KW - cancer KW - metastasis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281872 SN - 2073-4425 VL - 13 IS - 8 ER -