TY - JOUR A1 - Kim, Jin Hong A1 - Liess, Andreas A1 - Stolte, Matthias A1 - Krause, Ana-Maria A1 - Stepanenko, Vladimir A1 - Zhong, Chuwei A1 - Bialas, David A1 - Spano, Frank A1 - Würthner, Frank T1 - An Efficient Narrowband Near-Infrared at 1040 nm Organic Photodetector Realized by Intermolecular Charge Transfer Mediated Coupling Based on a Squaraine Dye JF - Advanced Materials N2 - A highly sensitive short-wave infrared (SWIR, λ > 1000 nm) organic photodiode (OPD) is described based on a well-organized nanocrystalline bulk-heterojunction (BHJ) active layer composed of a dicyanovinyl-functionalized squaraine dye (SQ-H) donor material in combination with PC\(_{61}\)BM. Through thermal annealing, dipolar SQ-H chromophores self-assemble in a nanoscale structure with intermolecular charge transfer mediated coupling, resulting in a redshifted and narrow absorption band at 1040 nm as well as enhanced charge carrier mobility. The optimized OPD exhibits an external quantum efficiency (EQE) of 12.3% and a full-width at half-maximum of only 85 nm (815 cm\(^{-1}\)) at 1050 nm under 0 V, which is the first efficient SWIR OPD based on J-type aggregates. Photoplethysmography application for heart-rate monitoring is successfully demonstrated on flexible substrates without applying reverse bias, indicating the potential of OPDs based on short-range coupled dye aggregates for low-power operating wearable applications. KW - squaraine dyes KW - crystal engineering KW - J-aggregates KW - near-infrared sensitivity KW - organic photodiodes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256374 VL - 33 IS - 26 ER - TY - JOUR A1 - Bold, Kevin A1 - Stolte, Matthias A1 - Shoyama, Kazutaka A1 - Krause, Ana‐Maria A1 - Schmiedel, Alexander A1 - Holzapfel, Marco A1 - Lambert, Christoph A1 - Würthner, Frank T1 - Macrocyclic Donor‐Acceptor Dyads Composed of Oligothiophene Half‐Cycles and Perylene Bisimides JF - Chemistry – A European Journal N2 - A series of donor‐acceptor (D−A) macrocyclic dyads consisting of an electron‐poor perylene bisimide (PBI) π‐scaffold bridged with electron‐rich α‐oligothiophenes bearing four, five, six and seven thiophene units between the two phenyl‐imide substituents has been synthesized and characterized by steady‐state UV/Vis absorption and fluorescence spectroscopy, cyclic and differential pulse voltammetry as well as transient absorption spectroscopy. Tying the oligothiophene strands in a conformationally fixed macrocyclic arrangement leads to a more rigid π‐scaffold with vibronic fine structure in the respective absorption spectra. Electrochemical analysis disclosed charged state properties in solution which are strongly dependent on the degree of rigidification within the individual macrocycle. Investigation of the excited state dynamics revealed an oligothiophene bridge size‐dependent fast charge transfer process for the macrocyclic dyads upon PBI subunit excitation. KW - donor-acceptor dyad KW - macrocycle KW - oligothiophene KW - perylene bisimide KW - photoinduced electron transfer Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-276435 VL - 28 IS - 30 ER -