TY - JOUR A1 - Leal, Andrea Zurita A1 - Schwebs, Marie A1 - Briggs, Emma A1 - Weisert, Nadine A1 - Reis, Helena A1 - Lemgruber, Leondro A1 - Luko, Katarina A1 - Wilkes, Jonathan A1 - Butter, Falk A1 - McCulloch, Richard A1 - Janzen, Christian J. T1 - Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation JF - Nucleic Acids Research N2 - Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to off-spring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation. KW - cross-link repair KW - cell cycle KW - gene expression KW - low fidelity KW - replication KW - bypass KW - theta KW - reveals KW - binding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230579 VL - 48 IS - 17 ER -