TY - JOUR A1 - Grassinger, Julia Maria A1 - Floren, Andreas A1 - Müller, Tobias A1 - Cerezo-Echevarria, Argiñe A1 - Beitzinger, Christoph A1 - Conrad, David A1 - Törner, Katrin A1 - Staudacher, Marlies A1 - Aupperle-Lellbach, Heike T1 - Digital lesions in dogs: a statistical breed analysis of 2912 cases JF - Veterinary Sciences N2 - Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014–2019 to the Laboklin GmbH & Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43%), tumor-like lesions in 138 (5%), and neoplasms in 1528 cases (52%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = −2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = −2.17), Jack Russell Terriers (log OR = −1.88), and Rhodesian Ridgebacks (log OR = −1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or “resistance” to the development of specific acral tumors and/or other sites. KW - canine KW - subungual KW - toe KW - tumor KW - inflammation KW - breed predisposition Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242690 SN - 2306-7381 VL - 8 IS - 7 ER - TY - JOUR A1 - Floren, Andreas A1 - von Rintelen, Thomas A1 - Herbert, Paul D. N. A1 - de Araujo, Bruno Cancian A1 - Schmidt, Stefan A1 - Balke, Michael A1 - Narakusumo, Raden Pramesa A1 - Peggie, Djunijanti A1 - Ubaidillah, Rosichon A1 - von Rintelen, Kristina A1 - Müller, Tobias T1 - Integrative ecological and molecular analysis indicate high diversity and strict elevational separation of canopy beetles in tropical mountain forests JF - Scientific Reports N2 - Tropical mountain forests contribute disproportionately to terrestrial biodiversity but little is known about insect diversity in the canopy and how it is distributed between tree species. We sampled tree-specific arthropod communities from 28 trees by canopy fogging and analysed beetle communities which were first morphotyped and then identified by their DNA barcodes. Our results show that communities from forests at 1100 and 1700 m a.s.l. are almost completely distinct. Diversity was much lower in the upper forest while community structure changed from many rare, less abundant species to communities with a pronounced dominance structure. We also found significantly higher beta-diversity between trees at the lower than higher elevation forest where community similarity was high. Comparisons on tree species found at both elevations reinforced these results. There was little species overlap between sites indicating limited elevational ranges. Furthermore, we exploited the advantage of DNA barcodes to patterns of haplotype diversity in some of the commoner species. Our results support the advantage of fogging and DNA barcodes for community studies and underline the need for comprehensive research aimed at the preservation of these last remaining pristine forests. KW - beta-diversity KW - community data KW - gradients KW - insects KW - hypthesis KW - evolution KW - passes KW - ants Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230565 VL - 10 ER - TY - JOUR A1 - Floren, Andreas A1 - Mupepele, Anne-Christine A1 - Müller, Tobias A1 - Dittrich, Marcus T1 - Are Temperate Canopy Spiders Tree-Species Specific? N2 - Arboreal spiders in deciduous and coniferous trees were investigated on their distribution and diversity. Insecticidal knock-down was used to comprehensively sample spiders from 175 trees from 2001 to 2003 in the Białowieża forest and three remote forests in Poland. We identified 140 species from 9273 adult spiders. Spider communities were distinguished between deciduous and coniferous trees. The richest fauna was collected from Quercus where beta diversity was also highest. A tree-species-specific pattern was clearly observed for Alnus, Carpinus, Picea and Pinus trees and also for those tree species that were fogged in only four or three replicates, namely Betula and Populus. This hitherto unrecognised association was mainly due to the community composition of common species identified in a Dufrene-Legendre indicator species analysis. It was not caused by spatial or temporal autocorrelation. Explaining tree-species specificity for generalist predators like spiders is difficult and has to involve physical and ecological tree parameters like linkage with the abundance of prey species. However, neither did we find a consistent correlation of prey group abundances with spiders nor could differences in spider guild composition explain the observed pattern. Our results hint towards the importance of deterministic mechanisms structuring communities of generalist canopy spiders although the casual relationship is not yet understood. KW - trees KW - spiders KW - conifers KW - forests KW - predation KW - oaks KW - community structures KW - pines Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111413 ER - TY - JOUR A1 - Floren, Andreas A1 - Linsenmair, Karl Eduard A1 - Müller, Tobias T1 - Diversity and functional relevance of canopy arthropods in Central Europe JF - Diversity N2 - Although much is known about the ecology and functional importance of canopy arthropods in temperate forests, few studies have tried to assess the overall diversity and investigate the composition and dynamics of tree-specific communities. This has impeded a deeper understanding of the functioning of forests, and of how to maintain system services. Here, we present the first comprehensive data of whole arthropod communities, collected by insecticidal knockdown (fogging) from 1159 trees in 18 study areas in Central Europe during the last 25 years. The data includes 3,253,591 arthropods from 32 taxa (order, suborder, family) collected on 24 tree species from 18 genera. Fogging collects free-living, ectophytic arthropods in approximately the same number as they occur in the trees. To our knowledge, these are the most comprehensive data available today on the taxonomic composition of arboreal fauna. Assigning all arthropods to their feeding guild provided a proxy of their functional importance. The data showed that the canopy communities were regularly structured, with a clear dominance hierarchy comprised of eight ‘major taxa’ that represented 87% of all arthropods. Despite significant differences in the proportions of taxa on deciduous and coniferous trees, the composition of the guilds was very similar. The individual tree genera, on the other hand, showed significant differences in guild composition, especially when different study areas and years were compared, whereas tree-specific traits, such as tree height, girth in breast height or leaf cover, explained little of the overall variance. On the ordinal level, guild composition also differed significantly between managed and primary forests, with a simultaneous low within-group variability, indicating that management is a key factor determining the distribution of biodiversity and guild composition. KW - temperate forests KW - insecticidal knockdown KW - community structure KW - functional diversity KW - guild constancy KW - forest management KW - pristine forests KW - Bialowieza Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285924 SN - 1424-2818 VL - 14 IS - 8 ER - TY - JOUR A1 - Floren, Andreas A1 - Krüger, Dirk A1 - Müller, Tobias A1 - Dittrich, Marcus A1 - Rudloff, Renate A1 - Hoppe, Björn A1 - Linsenmair, Karl Eduard T1 - Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment JF - PLoS ONE N2 - Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dun, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical 'region' was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dun, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores. KW - european beech forests KW - bark beetles KW - management KW - decay KW - ecology KW - norway spruce KW - substrate quality KW - communities KW - rare Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145129 VL - 10 IS - 11 ER - TY - JOUR A1 - Floren, Andreas A1 - Horchler, Peter J. A1 - Müller, Tobias T1 - The impact of the neophyte tree Fraxinus pennsylvanica [Marshall] on beetle diversity under climate change JF - Sustainability N2 - We studied the impact of the neophyte tree Fraxinus pennsylvanica on the diversity of beetles in floodplain forests along the river Elbe in Germany in 2016, 2017 and in 2020, where 80% of all Fraxinus excelsior trees had died following severe droughts. Beetles were collected by insecticidal knock-down from 121 trees (64 F. excelsior and 57 F. pennsylvanica) and identified to 547 species in 15,214 specimens. The trees sampled in 2016 and 2017 showed no signs of drought stress or ash dieback and serve as a reference for the comparison with the 2020 fauna. The data proved that F. excelsior harbours the most diverse beetle community, which differed also significantly in guild composition from F. pennsylvanica. Triggered by extremely dry and long summer seasons, the 2020 ash dieback had profound and forest-wide impacts. Several endangered, red-listed beetle species of Saxonia Anhalt had increased in numbers and became secondary pests on F. excelsior. Diversity decreased whilst numbers of xylobionts increased on all trees, reaching 78% on F. excelsior. Proportions of xylobionts remained constant on F. pennsylvanica. Phytophages were almost absent from all trees, but mycetophages increased on F. pennsylvanica. Our data suggest that as a result of the dieback of F. excelsior the neophyte F. pennsylvanica might become a rescue species for the European Ash fauna, as it provides the second-best habitat. We show how difficult it is to assess the dynamics and the ecological impact of neophytes, especially under conditions similar to those projected by climate change models. The diversity and abundance of canopy arthropods demonstrates their importance in understanding forest functions and maintenance of ecosystem services, illustrating that their consideration is essential for forest adaptation to climate change. KW - forest conversion KW - neophyte trees KW - ash dieback KW - beetle communities KW - ecosystem function Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262223 SN - 2071-1050 VL - 14 IS - 3 ER -